summary refs log tree commit diff
path: root/pkgs/tools/security/afl/qemu-patches/afl-qemu-cpu-inl.h
blob: c6ebc873ae09fde551b4be9ff4d6b17558cb1d10 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/*
   american fuzzy lop - high-performance binary-only instrumentation
   -----------------------------------------------------------------

   Written by Andrew Griffiths <agriffiths@google.com> and
              Michal Zalewski <lcamtuf@google.com>

   Idea & design very much by Andrew Griffiths.

   Copyright 2015 Google Inc. All rights reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at:

     http://www.apache.org/licenses/LICENSE-2.0

   This code is a shim patched into the separately-distributed source
   code of QEMU 2.2.0. It leverages the built-in QEMU tracing functionality
   to implement AFL-style instrumentation and to take care of the remaining
   parts of the AFL fork server logic.

   The resulting QEMU binary is essentially a standalone instrumentation
   tool; for an example of how to leverage it for other purposes, you can
   have a look at afl-showmap.c.

 */

#include <sys/shm.h>
#include "afl-config.h"

/***************************
 * VARIOUS AUXILIARY STUFF *
 ***************************/

/* A snippet patched into tb_find_slow to inform the parent process that
   we have hit a new block that hasn't been translated yet, and to tell
   it to translate within its own context, too (this avoids translation
   overhead in the next forked-off copy). */

#define AFL_QEMU_CPU_SNIPPET1 do { \
    afl_request_tsl(pc, cs_base, flags); \
  } while (0)

/* This snippet kicks in when the instruction pointer is positioned at
   _start and does the usual forkserver stuff, not very different from
   regular instrumentation injected via afl-as.h. */

#define AFL_QEMU_CPU_SNIPPET2 do { \
    if(tb->pc == afl_entry_point) { \
      afl_setup(); \
      afl_forkserver(env); \
    } \
    afl_maybe_log(tb->pc); \
  } while (0)

/* We use one additional file descriptor to relay "needs translation"
   messages between the child and the fork server. */

#define TSL_FD (FORKSRV_FD - 1)

/* This is equivalent to afl-as.h: */

static unsigned char *afl_area_ptr;

/* Exported variables populated by the code patched into elfload.c: */

abi_ulong afl_entry_point, /* ELF entry point (_start) */
          afl_start_code,  /* .text start pointer      */
          afl_end_code;    /* .text end pointer        */

/* Set in the child process in forkserver mode: */

static unsigned char afl_fork_child;
unsigned int afl_forksrv_pid;

/* Instrumentation ratio: */

static unsigned int afl_inst_rms = MAP_SIZE;

/* Function declarations. */

static void afl_setup(void);
static void afl_forkserver(CPUArchState*);
static inline void afl_maybe_log(abi_ulong);

static void afl_wait_tsl(CPUArchState*, int);
static void afl_request_tsl(target_ulong, target_ulong, uint64_t);

static TranslationBlock *tb_find_slow(CPUArchState*, target_ulong,
                                      target_ulong, uint64_t);


/* Data structure passed around by the translate handlers: */

struct afl_tsl {
  target_ulong pc;
  target_ulong cs_base;
  uint64_t flags;
};


/*************************
 * ACTUAL IMPLEMENTATION *
 *************************/


/* Set up SHM region and initialize other stuff. */

static void afl_setup(void) {

  char *id_str = getenv(SHM_ENV_VAR),
       *inst_r = getenv("AFL_INST_RATIO");

  int shm_id;

  if (inst_r) {

    unsigned int r;

    r = atoi(inst_r);

    if (r > 100) r = 100;
    if (!r) r = 1;

    afl_inst_rms = MAP_SIZE * r / 100;

  }

  if (id_str) {

    shm_id = atoi(id_str);
    afl_area_ptr = shmat(shm_id, NULL, 0);

    if (afl_area_ptr == (void*)-1) exit(1);

  }

  if (getenv("AFL_INST_LIBS")) {

    afl_start_code = 0;
    afl_end_code   = (abi_ulong)-1;

  }

}


/* Fork server logic, invoked once we hit _start. */

static void afl_forkserver(CPUArchState *env) {

  static unsigned char tmp[4];

  if (!afl_area_ptr) return;

  /* Tell the parent that we're alive. If the parent doesn't want
     to talk, assume that we're not running in forkserver mode. */

  if (write(FORKSRV_FD + 1, tmp, 4) != 4) return;

  afl_forksrv_pid = getpid();

  /* All right, let's await orders... */

  while (1) {

    pid_t child_pid;
    int status, t_fd[2];

    /* Whoops, parent dead? */

    if (read(FORKSRV_FD, tmp, 4) != 4) exit(2);

    /* Establish a channel with child to grab translation commands. We'll 
       read from t_fd[0], child will write to TSL_FD. */

    if (pipe(t_fd) || dup2(t_fd[1], TSL_FD) < 0) exit(3);
    close(t_fd[1]);

    child_pid = fork();
    if (child_pid < 0) exit(4);

    if (!child_pid) {

      /* Child process. Close descriptors and run free. */

      afl_fork_child = 1;
      close(FORKSRV_FD);
      close(FORKSRV_FD + 1);
      close(t_fd[0]);
      return;

    }

    /* Parent. */

    close(TSL_FD);

    if (write(FORKSRV_FD + 1, &child_pid, 4) != 4) exit(5);

    /* Collect translation requests until child dies and closes the pipe. */

    afl_wait_tsl(env, t_fd[0]);

    /* Get and relay exit status to parent. */

    if (waitpid(child_pid, &status, WUNTRACED) < 0) exit(6);
    if (write(FORKSRV_FD + 1, &status, 4) != 4) exit(7);

  }

}


/* The equivalent of the tuple logging routine from afl-as.h. */

static inline void afl_maybe_log(abi_ulong cur_loc) {

  static abi_ulong prev_loc;

  /* Optimize for cur_loc > afl_end_code, which is the most likely case on
     Linux systems. */

  if (cur_loc > afl_end_code || cur_loc < afl_start_code || !afl_area_ptr)
    return;

  /* Looks like QEMU always maps to fixed locations, so we can skip this:
     cur_loc -= afl_start_code; */

  /* Instruction addresses may be aligned. Let's mangle the value to get
     something quasi-uniform. */

  cur_loc  = (cur_loc >> 4) ^ (cur_loc << 8);
  cur_loc &= MAP_SIZE - 1;

  /* Implement probabilistic instrumentation by looking at scrambled block
     address. This keeps the instrumented locations stable across runs. */

  if (cur_loc >= afl_inst_rms) return;

  afl_area_ptr[cur_loc ^ prev_loc]++;
  prev_loc = cur_loc >> 1;

}


/* This code is invoked whenever QEMU decides that it doesn't have a
   translation of a particular block and needs to compute it. When this happens,
   we tell the parent to mirror the operation, so that the next fork() has a
   cached copy. */

static void afl_request_tsl(target_ulong pc, target_ulong cb, uint64_t flags) {

  struct afl_tsl t;

  if (!afl_fork_child) return;

  t.pc      = pc;
  t.cs_base = cb;
  t.flags   = flags;

  if (write(TSL_FD, &t, sizeof(struct afl_tsl)) != sizeof(struct afl_tsl))
    return;

}


/* This is the other side of the same channel. Since timeouts are handled by
   afl-fuzz simply killing the child, we can just wait until the pipe breaks. */

static void afl_wait_tsl(CPUArchState *env, int fd) {

  struct afl_tsl t;

  while (1) {

    /* Broken pipe means it's time to return to the fork server routine. */

    if (read(fd, &t, sizeof(struct afl_tsl)) != sizeof(struct afl_tsl))
      break;

    tb_find_slow(env, t.pc, t.cs_base, t.flags);

  }

  close(fd);

}