summary refs log tree commit diff
path: root/lib/lists.nix
blob: 566ee89c95bcb8bd5a27f78bf255e4d2c1a6b9e3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# General list operations.

with import ./trivial.nix;

rec {

  inherit (builtins) head tail length isList elemAt concatLists filter elem;


  # Create a list consisting of a single element.  `singleton x' is
  # sometimes more convenient with respect to indentation than `[x]'
  # when x spans multiple lines.
  singleton = x: [x];


  # "Fold" a binary function `op' between successive elements of
  # `list' with `nul' as the starting value, i.e., `fold op nul [x_1
  # x_2 ... x_n] == op x_1 (op x_2 ... (op x_n nul))'.  (This is
  # Haskell's foldr).
  fold = op: nul: list:
    let
      len = length list;
      fold' = n:
        if n == len
        then nul
        else op (elemAt list n) (fold' (n + 1));
    in fold' 0;

  # Left fold: `fold op nul [x_1 x_2 ... x_n] == op (... (op (op nul
  # x_1) x_2) ... x_n)'.
  foldl = op: nul: list:
    let
      len = length list;
      foldl' = n:
        if n == -1
        then nul
        else op (foldl' (n - 1)) (elemAt list n);
    in foldl' (length list - 1);


  # map with index: `imap (i: v: "${v}-${toString i}") ["a" "b"] ==
  # ["a-1" "b-2"]'
  imap = f: list:
    let
      len = length list;
      imap' = n:
        if n == len
          then []
          else [ (f (n + 1) (elemAt list n)) ] ++ imap' (n + 1);
    in imap' 0;


  # Map and concatenate the result.
  concatMap = f: list: concatLists (map f list);


  # Flatten the argument into a single list; that is, nested lists are
  # spliced into the top-level lists.  E.g., `flatten [1 [2 [3] 4] 5]
  # == [1 2 3 4 5]' and `flatten 1 == [1]'.
  flatten = x:
    if isList x
    then fold (x: y: (flatten x) ++ y) [] x
    else [x];


  # Remove elements equal to 'e' from a list.  Useful for buildInputs.
  remove = e: filter (x: x != e);


  # Find the sole element in the list matching the specified
  # predicate, returns `default' if no such element exists, or
  # `multiple' if there are multiple matching elements.
  findSingle = pred: default: multiple: list:
    let found = filter pred list; len = length found;
    in if len == 0 then default
      else if len != 1 then multiple
      else head found;


  # Find the first element in the list matching the specified
  # predicate or returns `default' if no such element exists.
  findFirst = pred: default: list:
    let found = filter pred list;
    in if found == [] then default else head found;


  # Return true iff function `pred' returns true for at least element
  # of `list'.
  any = pred: fold (x: y: if pred x then true else y) false;


  # Return true iff function `pred' returns true for all elements of
  # `list'.
  all = pred: fold (x: y: if pred x then y else false) true;


  # Count how many times function `pred' returns true for the elements
  # of `list'.
  count = pred: fold (x: c: if pred x then c + 1 else c) 0;


  # Return a singleton list or an empty list, depending on a boolean
  # value.  Useful when building lists with optional elements
  # (e.g. `++ optional (system == "i686-linux") flashplayer').
  optional = cond: elem: if cond then [elem] else [];


  # Return a list or an empty list, dependening on a boolean value.
  optionals = cond: elems: if cond then elems else [];


  # If argument is a list, return it; else, wrap it in a singleton
  # list.  If you're using this, you should almost certainly
  # reconsider if there isn't a more "well-typed" approach.
  toList = x: if isList x then x else [x];


  # Return a list of integers from `first' up to and including `last'.
  range = first: last:
    if last < first
    then []
    else [first] ++ range (first + 1) last;


  # Partition the elements of a list in two lists, `right' and
  # `wrong', depending on the evaluation of a predicate.
  partition = pred:
    fold (h: t:
      if pred h
      then { right = [h] ++ t.right; wrong = t.wrong; }
      else { right = t.right; wrong = [h] ++ t.wrong; }
    ) { right = []; wrong = []; };


  zipListsWith = f: fst: snd:
    let
      len1 = length fst;
      len2 = length snd;
      len = if len1 < len2 then len1 else len2;
      zipListsWith' = n:
        if n != len then
          [ (f (elemAt fst n) (elemAt snd n)) ]
          ++ zipListsWith' (n + 1)
        else [];
    in zipListsWith' 0;

  zipLists = zipListsWith (fst: snd: { inherit fst snd; });


  # Reverse the order of the elements of a list.  FIXME: O(n^2)!
  reverseList = fold (e: acc: acc ++ [ e ]) [];


  # Sort a list based on a comparator function which compares two
  # elements and returns true if the first argument is strictly below
  # the second argument.  The returned list is sorted in an increasing
  # order.  The implementation does a quick-sort.
  sort = strictLess: list:
    let
      len = length list;
      first = head list;
      pivot' = n: acc@{ left, right }: let el = elemAt list n; next = pivot' (n + 1); in
        if n == len
          then acc
        else if strictLess first el
          then next { inherit left; right = [ el ] ++ right; }
        else
          next { left = [ el ] ++ left; inherit right; };
      pivot = pivot' 1 { left = []; right = []; };
    in
      if len < 2 then list
      else (sort strictLess pivot.left) ++  [ first ] ++  (sort strictLess pivot.right);


  # Return the first (at most) N elements of a list.
  take = count: list:
    let
      len = length list;
      take' = n:
        if n == len || n == count
          then []
        else
          [ (elemAt list n) ] ++ take' (n + 1);
    in take' 0;


  # Remove the first (at most) N elements of a list.
  drop = count: list:
    let
      len = length list;
      drop' = n:
        if n == -1 || n < count
          then []
        else
          drop' (n - 1) ++ [ (elemAt list n) ];
    in drop' (len - 1);


  # Return the last element of a list.
  last = list:
    assert list != []; elemAt list (length list - 1);


  # Return all elements but the last
  init = list: assert list != []; take (length list - 1) list;


  # Zip two lists together.
  zipTwoLists = xs: ys:
    let
      len1 = length xs;
      len2 = length ys;
      len = if len1 < len2 then len1 else len2;
      zipTwoLists' = n:
        if n != len then
          [ { first = elemAt xs n; second = elemAt ys n; } ]
          ++ zipTwoLists' (n + 1)
        else [];
    in zipTwoLists' 0;


  deepSeqList = xs: y: if any (x: deepSeq x false) xs then y else y;

  crossLists = f: foldl (fs: args: concatMap (f: map f args) fs) [f];

}