summary refs log tree commit diff
path: root/sys_util/src/mmap.rs
blob: 4ce72b66b933d70e4689f6f8bbdc3eeb1d95ddd0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! The mmap module provides a safe interface to mmap memory and ensures unmap is called when the
//! mmap object leaves scope.

use std;
use std::io::{Read, Write};
use std::ptr::null_mut;
use std::os::unix::io::AsRawFd;

use libc;

use errno;

use data_model::volatile_memory::*;
use data_model::DataInit;

#[derive(Debug)]
pub enum Error {
    /// Requested memory out of range.
    InvalidAddress,
    /// Requested offset is out of range of `libc::off_t`.
    InvalidOffset,
    /// Requested memory range spans past the end of the region.
    InvalidRange(usize, usize),
    /// Couldn't read from the given source.
    ReadFromSource(std::io::Error),
    /// `mmap` returned the given error.
    SystemCallFailed(errno::Error),
    /// Writing to memory failed
    WriteToMemory(std::io::Error),
    /// Reading from memory failed
    ReadFromMemory(std::io::Error),
}
pub type Result<T> = std::result::Result<T, Error>;

/// Wraps an anonymous shared memory mapping in the current process.
#[derive(Debug)]
pub struct MemoryMapping {
    addr: *mut u8,
    size: usize,
}

// Send and Sync aren't automatically inherited for the raw address pointer.
// Accessing that pointer is only done through the stateless interface which
// allows the object to be shared by multiple threads without a decrease in
// safety.
unsafe impl Send for MemoryMapping {}
unsafe impl Sync for MemoryMapping {}

impl MemoryMapping {
    /// Creates an anonymous shared mapping of `size` bytes.
    ///
    /// # Arguments
    /// * `size` - Size of memory region in bytes.
    pub fn new(size: usize) -> Result<MemoryMapping> {
        // This is safe because we are creating an anonymous mapping in a place not already used by
        // any other area in this process.
        let addr = unsafe {
            libc::mmap(null_mut(),
                       size,
                       libc::PROT_READ | libc::PROT_WRITE,
                       libc::MAP_ANONYMOUS | libc::MAP_SHARED | libc::MAP_NORESERVE,
                       -1,
                       0)
        };
        if addr == libc::MAP_FAILED {
            return Err(Error::SystemCallFailed(errno::Error::last()));
        }
        // This is safe because we call madvise with a valid address and size, and we check the
        // return value. We only warn about an error because failure here is not fatal to the mmap.
        if unsafe { libc::madvise(addr, size, libc::MADV_DONTDUMP) } == -1 {
            warn!("failed madvise(MADV_DONTDUMP) on mmap: {:?}",
                  errno::Error::last());
        }
        Ok(MemoryMapping {
               addr: addr as *mut u8,
               size: size,
           })
    }

    /// Maps the first `size` bytes of the given `fd`.
    ///
    /// # Arguments
    /// * `fd` - File descriptor to mmap from.
    /// * `size` - Size of memory region in bytes.
    pub fn from_fd(fd: &AsRawFd, size: usize) -> Result<MemoryMapping> {
        MemoryMapping::from_fd_offset(fd, size, 0)
    }

    /// Maps the `size` bytes starting at `offset` bytes of the given `fd`.
    ///
    /// # Arguments
    /// * `fd` - File descriptor to mmap from.
    /// * `size` - Size of memory region in bytes.
    /// * `offset` - Offset in bytes from the beginning of `fd` to start the mmap.
    pub fn from_fd_offset(fd: &AsRawFd, size: usize, offset: usize) -> Result<MemoryMapping> {
        if offset > libc::off_t::max_value() as usize {
            return Err(Error::InvalidOffset);
        }
        // This is safe because we are creating a mapping in a place not already used by any other
        // area in this process.
        let addr = unsafe {
            libc::mmap(null_mut(),
                       size,
                       libc::PROT_READ | libc::PROT_WRITE,
                       libc::MAP_SHARED,
                       fd.as_raw_fd(),
                       offset as libc::off_t)
        };
        if addr == libc::MAP_FAILED {
            return Err(Error::SystemCallFailed(errno::Error::last()));
        }
        // This is safe because we call madvise with a valid address and size, and we check the
        // return value. We only warn about an error because failure here is not fatal to the mmap.
        if unsafe { libc::madvise(addr, size, libc::MADV_DONTDUMP) } == -1 {
            warn!("failed madvise(MADV_DONTDUMP) on mmap: {:?}",
                  errno::Error::last());
        }
        Ok(MemoryMapping {
               addr: addr as *mut u8,
               size: size,
           })
    }

    /// Returns a pointer to the begining of the memory region.  Should only be
    /// used for passing this region to ioctls for setting guest memory.
    pub fn as_ptr(&self) -> *mut u8 {
        self.addr
    }

    /// Returns the size of the memory region in bytes.
    pub fn size(&self) -> usize {
        self.size
    }

    /// Writes a slice to the memory region at the specified offset.
    /// Returns the number of bytes written.  The number of bytes written can
    /// be less than the length of the slice if there isn't enough room in the
    /// memory region.
    ///
    /// # Examples
    /// * Write a slice at offset 256.
    ///
    /// ```
    /// #   use sys_util::MemoryMapping;
    /// #   let mut mem_map = MemoryMapping::new(1024).unwrap();
    ///     let res = mem_map.write_slice(&[1,2,3,4,5], 256);
    ///     assert!(res.is_ok());
    ///     assert_eq!(res.unwrap(), 5);
    /// ```
    pub fn write_slice(&self, buf: &[u8], offset: usize) -> Result<usize> {
        if offset >= self.size {
            return Err(Error::InvalidAddress);
        }
        unsafe {
            // Guest memory can't strictly be modeled as a slice because it is
            // volatile.  Writing to it with what compiles down to a memcpy
            // won't hurt anything as long as we get the bounds checks right.
            let mut slice: &mut [u8] = &mut self.as_mut_slice()[offset..];
            Ok(slice.write(buf).map_err(Error::WriteToMemory)?)
        }
    }

    /// Reads to a slice from the memory region at the specified offset.
    /// Returns the number of bytes read.  The number of bytes read can
    /// be less than the length of the slice if there isn't enough room in the
    /// memory region.
    ///
    /// # Examples
    /// * Read a slice of size 16 at offset 256.
    ///
    /// ```
    /// #   use sys_util::MemoryMapping;
    /// #   let mut mem_map = MemoryMapping::new(1024).unwrap();
    ///     let buf = &mut [0u8; 16];
    ///     let res = mem_map.read_slice(buf, 256);
    ///     assert!(res.is_ok());
    ///     assert_eq!(res.unwrap(), 16);
    /// ```
    pub fn read_slice(&self, mut buf: &mut [u8], offset: usize) -> Result<usize> {
        if offset >= self.size {
            return Err(Error::InvalidAddress);
        }
        unsafe {
            // Guest memory can't strictly be modeled as a slice because it is
            // volatile.  Writing to it with what compiles down to a memcpy
            // won't hurt anything as long as we get the bounds checks right.
            let slice: &[u8] = &self.as_slice()[offset..];
            Ok(buf.write(slice).map_err(Error::ReadFromMemory)?)
        }
    }

    /// Writes an object to the memory region at the specified offset.
    /// Returns Ok(()) if the object fits, or Err if it extends past the end.
    ///
    /// # Examples
    /// * Write a u64 at offset 16.
    ///
    /// ```
    /// #   use sys_util::MemoryMapping;
    /// #   let mut mem_map = MemoryMapping::new(1024).unwrap();
    ///     let res = mem_map.write_obj(55u64, 16);
    ///     assert!(res.is_ok());
    /// ```
    pub fn write_obj<T: DataInit>(&self, val: T, offset: usize) -> Result<()> {
        unsafe {
            // Guest memory can't strictly be modeled as a slice because it is
            // volatile.  Writing to it with what compiles down to a memcpy
            // won't hurt anything as long as we get the bounds checks right.
            self.range_end(offset, std::mem::size_of::<T>())?;
            std::ptr::write_volatile(&mut self.as_mut_slice()[offset..] as *mut _ as *mut T, val);
            Ok(())
        }
    }

    /// Reads on object from the memory region at the given offset.
    /// Reading from a volatile area isn't strictly safe as it could change
    /// mid-read.  However, as long as the type T is plain old data and can
    /// handle random initialization, everything will be OK.
    ///
    /// # Examples
    /// * Read a u64 written to offset 32.
    ///
    /// ```
    /// #   use sys_util::MemoryMapping;
    /// #   let mut mem_map = MemoryMapping::new(1024).unwrap();
    ///     let res = mem_map.write_obj(55u64, 32);
    ///     assert!(res.is_ok());
    ///     let num: u64 = mem_map.read_obj(32).unwrap();
    ///     assert_eq!(55, num);
    /// ```
    pub fn read_obj<T: DataInit>(&self, offset: usize) -> Result<T> {
        self.range_end(offset, std::mem::size_of::<T>())?;
        unsafe {
            // This is safe because by definition Copy types can have their bits
            // set arbitrarily and still be valid.
            Ok(std::ptr::read_volatile(&self.as_slice()[offset..] as *const _ as *const T))
        }
    }

    /// Reads data from a readable object like a File and writes it to guest memory.
    ///
    /// # Arguments
    /// * `mem_offset` - Begin writing memory at this offset.
    /// * `src` - Read from `src` to memory.
    /// * `count` - Read `count` bytes from `src` to memory.
    ///
    /// # Examples
    ///
    /// * Read bytes from /dev/urandom
    ///
    /// ```
    /// # use sys_util::MemoryMapping;
    /// # use std::fs::File;
    /// # use std::path::Path;
    /// # fn test_read_random() -> Result<u32, ()> {
    /// #     let mut mem_map = MemoryMapping::new(1024).unwrap();
    ///       let mut file = File::open(Path::new("/dev/urandom")).map_err(|_| ())?;
    ///       mem_map.read_to_memory(32, &mut file, 128).map_err(|_| ())?;
    ///       let rand_val: u32 =  mem_map.read_obj(40).map_err(|_| ())?;
    /// #     Ok(rand_val)
    /// # }
    /// ```
    pub fn read_to_memory<F>(&self, mem_offset: usize, src: &mut F, count: usize) -> Result<()>
        where F: Read
    {
        let mem_end = self.range_end(mem_offset, count)
            .map_err(|_| Error::InvalidRange(mem_offset, count))?;
        unsafe {
            // It is safe to overwrite the volatile memory.  Acessing the guest
            // memory as a mutable slice is OK because nothing assumes another
            // thread won't change what is loaded.
            let dst = &mut self.as_mut_slice()[mem_offset..mem_end];
            src.read_exact(dst).map_err(Error::ReadFromSource)?;
        }
        Ok(())
    }

    /// Writes data from memory to a writable object.
    ///
    /// # Arguments
    /// * `mem_offset` - Begin reading memory from this offset.
    /// * `dst` - Write from memory to `dst`.
    /// * `count` - Read `count` bytes from memory to `src`.
    ///
    /// # Examples
    ///
    /// * Write 128 bytes to /dev/null
    ///
    /// ```
    /// # use sys_util::MemoryMapping;
    /// # use std::fs::File;
    /// # use std::path::Path;
    /// # fn test_write_null() -> Result<(), ()> {
    /// #     let mut mem_map = MemoryMapping::new(1024).unwrap();
    ///       let mut file = File::open(Path::new("/dev/null")).map_err(|_| ())?;
    ///       mem_map.write_from_memory(32, &mut file, 128).map_err(|_| ())?;
    /// #     Ok(())
    /// # }
    /// ```
    pub fn write_from_memory<F>(&self, mem_offset: usize, dst: &mut F, count: usize) -> Result<()>
        where F: Write
    {
        let mem_end = self.range_end(mem_offset, count)
            .map_err(|_| Error::InvalidRange(mem_offset, count))?;
        unsafe {
            // It is safe to read from volatile memory.  Acessing the guest
            // memory as a slice is OK because nothing assumes another thread
            // won't change what is loaded.
            let src = &self.as_mut_slice()[mem_offset..mem_end];
            dst.write_all(src).map_err(Error::ReadFromSource)?;
        }
        Ok(())
    }

    /// Uses madvise to tell the kernel the specified range won't be needed soon.
    pub fn dont_need_range(&self, mem_offset: usize, count: usize) -> Result<()> {
        self.range_end(mem_offset, count)
            .map_err(|_| Error::InvalidRange(mem_offset, count))?;
        let ret = unsafe {
            // madvising away the region is the same as the guest changing it.
            // Next time it is read, it may return zero pages.
            libc::madvise((self.addr as usize + mem_offset) as *mut _,
                          count,
                          libc::MADV_DONTNEED)
        };
        if ret < 0 {
            Err(Error::InvalidRange(mem_offset, count))
        } else {
            Ok(())
        }
    }

    unsafe fn as_slice(&self) -> &[u8] {
        // This is safe because we mapped the area at addr ourselves, so this slice will not
        // overflow. However, it is possible to alias.
        std::slice::from_raw_parts(self.addr, self.size)
    }

    unsafe fn as_mut_slice(&self) -> &mut [u8] {
        // This is safe because we mapped the area at addr ourselves, so this slice will not
        // overflow. However, it is possible to alias.
        std::slice::from_raw_parts_mut(self.addr, self.size)
    }

    // Check that offset+count is valid and return the sum.
    fn range_end(&self, offset: usize, count: usize) -> Result<usize> {
        let mem_end = offset.checked_add(count)
            .ok_or(Error::InvalidAddress)?;
        if mem_end > self.size() {
            return Err(Error::InvalidAddress);
        }
        Ok(mem_end)
    }
}

impl VolatileMemory for MemoryMapping {
    fn get_slice(&self, offset: u64, count: u64) -> VolatileMemoryResult<VolatileSlice> {
        let mem_end = calc_offset(offset, count)?;
        if mem_end > self.size as u64 {
            return Err(VolatileMemoryError::OutOfBounds { addr: mem_end });
        }

        // Safe because we checked that offset + count was within our range and we only ever hand
        // out volatile accessors.
        Ok(unsafe { VolatileSlice::new((self.addr as usize + offset as usize) as *mut _, count) })
    }
}

impl Drop for MemoryMapping {
    fn drop(&mut self) {
        // This is safe because we mmap the area at addr ourselves, and nobody
        // else is holding a reference to it.
        unsafe {
            libc::munmap(self.addr as *mut libc::c_void, self.size);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use data_model::{VolatileMemory, VolatileMemoryError};
    use std::os::unix::io::FromRawFd;

    #[test]
    fn basic_map() {
        let m = MemoryMapping::new(1024).unwrap();
        assert_eq!(1024, m.size());
    }

    #[test]
    fn map_invalid_size() {
        let res = MemoryMapping::new(0).unwrap_err();
        if let Error::SystemCallFailed(e) = res {
            assert_eq!(e.errno(), libc::EINVAL);
        } else {
            panic!("unexpected error: {:?}", res);
        }
    }

    #[test]
    fn map_invalid_fd() {
        let fd = unsafe { std::fs::File::from_raw_fd(-1) };
        let res = MemoryMapping::from_fd(&fd, 1024).unwrap_err();
        if let Error::SystemCallFailed(e) = res {
            assert_eq!(e.errno(), libc::EBADF);
        } else {
            panic!("unexpected error: {:?}", res);
        }
    }

    #[test]
    fn test_write_past_end() {
        let m = MemoryMapping::new(5).unwrap();
        let res = m.write_slice(&[1, 2, 3, 4, 5, 6], 0);
        assert!(res.is_ok());
        assert_eq!(res.unwrap(), 5);
    }

    #[test]
    fn slice_size() {
        let m = MemoryMapping::new(5).unwrap();
        let s = m.get_slice(2, 3).unwrap();
        assert_eq!(s.size(), 3);
    }

    #[test]
    fn slice_addr() {
        let m = MemoryMapping::new(5).unwrap();
        let s = m.get_slice(2, 3).unwrap();
        assert_eq!(s.as_ptr(), unsafe { m.as_ptr().offset(2) });
    }

    #[test]
    fn slice_store() {
        let m = MemoryMapping::new(5).unwrap();
        let r = m.get_ref(2).unwrap();
        r.store(9u16);
        assert_eq!(m.read_obj::<u16>(2).unwrap(), 9);
    }

    #[test]
    fn slice_overflow_error() {
        let m = MemoryMapping::new(5).unwrap();
        let res = m.get_slice(std::u64::MAX, 3).unwrap_err();
        assert_eq!(res,
                   VolatileMemoryError::Overflow {
                       base: std::u64::MAX,
                       offset: 3,
                   });

    }
    #[test]
    fn slice_oob_error() {
        let m = MemoryMapping::new(5).unwrap();
        let res = m.get_slice(3, 3).unwrap_err();
        assert_eq!(res, VolatileMemoryError::OutOfBounds { addr: 6 });
    }

    #[test]
    fn from_fd_offset_invalid() {
        let fd = unsafe { std::fs::File::from_raw_fd(-1) };
        let res = MemoryMapping::from_fd_offset(&fd, 4096, (libc::off_t::max_value() as usize) + 1)
            .unwrap_err();
        match res {
            Error::InvalidOffset => {}
            e => panic!("unexpected error: {:?}", e),
        }
    }
}