summary refs log tree commit diff
path: root/sys_util/src/guest_memory.rs
blob: 2a849e99bff27c65c5564afd685e3888054086a6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
// Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Track memory regions that are mapped to the guest VM.

use std::io::{Read, Write};
use std::result;
use std::sync::Arc;

use data_model::DataInit;
use data_model::volatile_memory::*;
use guest_address::GuestAddress;
use mmap::{self, MemoryMapping};

#[derive(Debug)]
pub enum Error {
    InvalidGuestAddress(GuestAddress),
    MemoryAccess(GuestAddress, mmap::Error),
    MemoryMappingFailed(mmap::Error),
    MemoryRegionOverlap,
    NoMemoryRegions,
    RegionOperationFailed,
}
pub type Result<T> = result::Result<T, Error>;

struct MemoryRegion {
    mapping: MemoryMapping,
    guest_base: GuestAddress,
}

fn region_end(region: &MemoryRegion) -> GuestAddress {
    // unchecked_add is safe as the region bounds were checked when it was created.
    region.guest_base.unchecked_add(region.mapping.size())
}

/// Tracks a memory region and where it is mapped in the guest.
#[derive(Clone)]
pub struct GuestMemory {
    regions: Arc<Vec<MemoryRegion>>,
}

impl GuestMemory {
    /// Creates a container for guest memory regions.
    /// Valid memory regions are specified as a Vec of (Address, Size) tuples sorted by Address.
    pub fn new(ranges: &[(GuestAddress, usize)]) -> Result<GuestMemory> {
        if ranges.is_empty() {
            return Err(Error::NoMemoryRegions);
        }

        let mut regions = Vec::<MemoryRegion>::new();
        for range in ranges.iter() {
            if let Some(last) = regions.last() {
                if last.guest_base
                       .checked_add(last.mapping.size())
                       .map_or(true, |a| a > range.0) {
                    return Err(Error::MemoryRegionOverlap);
                }
            }

            let mapping = MemoryMapping::new(range.1)
                .map_err(Error::MemoryMappingFailed)?;
            regions.push(MemoryRegion {
                             mapping: mapping,
                             guest_base: range.0,
                         });
        }

        Ok(GuestMemory { regions: Arc::new(regions) })
    }

    /// Returns the end address of memory.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sys_util::{GuestAddress, GuestMemory, MemoryMapping};
    /// # fn test_end_addr() -> Result<(), ()> {
    ///     let start_addr = GuestAddress(0x1000);
    ///     let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
    ///     assert_eq!(start_addr.checked_add(0x400), Some(gm.end_addr()));
    ///     Ok(())
    /// # }
    /// ```
    pub fn end_addr(&self) -> GuestAddress {
        self.regions
            .iter()
            .max_by_key(|region| region.guest_base)
            .map_or(GuestAddress(0), |region| region_end(region))
    }

    /// Returns true if the given address is within the memory range available to the guest.
    pub fn address_in_range(&self, addr: GuestAddress) -> bool {
        addr < self.end_addr()
    }

    /// Returns the address plus the offset if it is in range.
    pub fn checked_offset(&self, addr: GuestAddress, offset: usize) -> Option<GuestAddress> {
        addr.checked_add(offset)
            .and_then(|a| if a < self.end_addr() { Some(a) } else { None })
    }

    /// Returns the size of the memory region in bytes.
    pub fn num_regions(&self) -> usize {
        self.regions.len()
    }

    /// Madvise away the address range in the host that is associated with the given guest range.
    pub fn dont_need_range(&self, addr: GuestAddress, count: usize) -> Result<()> {
        self.do_in_region(addr, move |mapping, offset| {
            mapping
                .dont_need_range(offset, count)
                .map_err(|e| Error::MemoryAccess(addr, e))
        })
    }

    /// Perform the specified action on each region's addresses.
    pub fn with_regions<F, E>(&self, cb: F) -> result::Result<(), E>
        where F: Fn(usize, GuestAddress, usize, usize) -> result::Result<(), E>
    {
        for (index, region) in self.regions.iter().enumerate() {
            cb(index,
               region.guest_base,
               region.mapping.size(),
               region.mapping.as_ptr() as usize)?;
        }
        Ok(())
    }

    /// Perform the specified action on each region's addresses mutably.
    pub fn with_regions_mut<F, E>(&self, mut cb: F) -> result::Result<(), E>
        where F: FnMut(usize, GuestAddress, usize, usize) -> result::Result<(), E>
    {
        for (index, region) in self.regions.iter().enumerate() {
            cb(index,
               region.guest_base,
               region.mapping.size(),
               region.mapping.as_ptr() as usize)?;
        }
        Ok(())
    }
    /// Writes a slice to guest memory at the specified guest address.
    /// Returns the number of bytes written.  The number of bytes written can
    /// be less than the length of the slice if there isn't enough room in the
    /// memory region.
    ///
    /// # Examples
    /// * Write a slice at guestaddress 0x200.
    ///
    /// ```
    /// # use sys_util::{GuestAddress, GuestMemory, MemoryMapping};
    /// # fn test_write_u64() -> Result<(), ()> {
    /// #   let start_addr = GuestAddress(0x1000);
    /// #   let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
    ///     let res = gm.write_slice_at_addr(&[1,2,3,4,5], GuestAddress(0x200)).map_err(|_| ())?;
    ///     assert_eq!(5, res);
    ///     Ok(())
    /// # }
    /// ```
    pub fn write_slice_at_addr(&self, buf: &[u8], guest_addr: GuestAddress) -> Result<usize> {
        self.do_in_region(guest_addr, move |mapping, offset| {
            mapping
                .write_slice(buf, offset)
                .map_err(|e| Error::MemoryAccess(guest_addr, e))
        })
    }

    /// Reads to a slice from guest memory at the specified guest address.
    /// Returns the number of bytes read.  The number of bytes read can
    /// be less than the length of the slice if there isn't enough room in the
    /// memory region.
    ///
    /// # Examples
    /// * Read a slice of length 16 at guestaddress 0x200.
    ///
    /// ```
    /// # use sys_util::{GuestAddress, GuestMemory, MemoryMapping};
    /// # fn test_write_u64() -> Result<(), ()> {
    /// #   let start_addr = GuestAddress(0x1000);
    /// #   let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
    ///     let buf = &mut [0u8; 16];
    ///     let res = gm.read_slice_at_addr(buf, GuestAddress(0x200)).map_err(|_| ())?;
    ///     assert_eq!(16, res);
    ///     Ok(())
    /// # }
    /// ```
    pub fn read_slice_at_addr(&self,
                              mut buf: &mut [u8],
                              guest_addr: GuestAddress)
                              -> Result<usize> {
        self.do_in_region(guest_addr, move |mapping, offset| {
            mapping
                .read_slice(buf, offset)
                .map_err(|e| Error::MemoryAccess(guest_addr, e))
        })
    }

    /// Reads an object from guest memory at the given guest address.
    /// Reading from a volatile area isn't strictly safe as it could change
    /// mid-read.  However, as long as the type T is plain old data and can
    /// handle random initialization, everything will be OK.
    ///
    /// # Examples
    /// * Read a u64 from two areas of guest memory backed by separate mappings.
    ///
    /// ```
    /// # use sys_util::{GuestAddress, GuestMemory, MemoryMapping};
    /// # fn test_read_u64() -> Result<u64, ()> {
    /// #     let start_addr1 = GuestAddress(0x0);
    /// #     let start_addr2 = GuestAddress(0x400);
    /// #     let mut gm = GuestMemory::new(&vec![(start_addr1, 0x400), (start_addr2, 0x400)])
    /// #         .map_err(|_| ())?;
    ///       let num1: u64 = gm.read_obj_from_addr(GuestAddress(32)).map_err(|_| ())?;
    ///       let num2: u64 = gm.read_obj_from_addr(GuestAddress(0x400+32)).map_err(|_| ())?;
    /// #     Ok(num1 + num2)
    /// # }
    /// ```
    pub fn read_obj_from_addr<T: DataInit>(&self, guest_addr: GuestAddress) -> Result<T> {
        self.do_in_region(guest_addr, |mapping, offset| {
            mapping
                .read_obj(offset)
                .map_err(|e| Error::MemoryAccess(guest_addr, e))
        })
    }

    /// Writes an object to the memory region at the specified guest address.
    /// Returns Ok(()) if the object fits, or Err if it extends past the end.
    ///
    /// # Examples
    /// * Write a u64 at guest address 0x1100.
    ///
    /// ```
    /// # use sys_util::{GuestAddress, GuestMemory, MemoryMapping};
    /// # fn test_write_u64() -> Result<(), ()> {
    /// #   let start_addr = GuestAddress(0x1000);
    /// #   let mut gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
    ///     gm.write_obj_at_addr(55u64, GuestAddress(0x1100))
    ///         .map_err(|_| ())
    /// # }
    /// ```
    pub fn write_obj_at_addr<T: DataInit>(&self, val: T, guest_addr: GuestAddress) -> Result<()> {
        self.do_in_region(guest_addr, move |mapping, offset| {
            mapping
                .write_obj(val, offset)
                .map_err(|e| Error::MemoryAccess(guest_addr, e))
        })
    }

    /// Reads data from a readable object like a File and writes it to guest memory.
    ///
    /// # Arguments
    /// * `guest_addr` - Begin writing memory at this offset.
    /// * `src` - Read from `src` to memory.
    /// * `count` - Read `count` bytes from `src` to memory.
    ///
    /// # Examples
    ///
    /// * Read bytes from /dev/urandom
    ///
    /// ```
    /// # use sys_util::{GuestAddress, GuestMemory, MemoryMapping};
    /// # use std::fs::File;
    /// # use std::path::Path;
    /// # fn test_read_random() -> Result<u32, ()> {
    /// #     let start_addr = GuestAddress(0x1000);
    /// #     let gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
    ///       let mut file = File::open(Path::new("/dev/urandom")).map_err(|_| ())?;
    ///       let addr = GuestAddress(0x1010);
    ///       gm.read_to_memory(addr, &mut file, 128).map_err(|_| ())?;
    ///       let read_addr = addr.checked_add(8).ok_or(())?;
    ///       let rand_val: u32 = gm.read_obj_from_addr(read_addr).map_err(|_| ())?;
    /// #     Ok(rand_val)
    /// # }
    /// ```
    pub fn read_to_memory<F>(&self,
                             guest_addr: GuestAddress,
                             src: &mut F,
                             count: usize)
                             -> Result<()>
        where F: Read
    {
        self.do_in_region(guest_addr, move |mapping, offset| {
            mapping
                .read_to_memory(offset, src, count)
                .map_err(|e| Error::MemoryAccess(guest_addr, e))
        })
    }

    /// Writes data from memory to a writable object.
    ///
    /// # Arguments
    /// * `guest_addr` - Begin reading memory from this offset.
    /// * `dst` - Write from memory to `dst`.
    /// * `count` - Read `count` bytes from memory to `src`.
    ///
    /// # Examples
    ///
    /// * Write 128 bytes to /dev/null
    ///
    /// ```
    /// # use sys_util::{GuestAddress, GuestMemory, MemoryMapping};
    /// # use std::fs::File;
    /// # use std::path::Path;
    /// # fn test_write_null() -> Result<(), ()> {
    /// #     let start_addr = GuestAddress(0x1000);
    /// #     let gm = GuestMemory::new(&vec![(start_addr, 0x400)]).map_err(|_| ())?;
    ///       let mut file = File::open(Path::new("/dev/null")).map_err(|_| ())?;
    ///       let addr = GuestAddress(0x1010);
    ///       gm.write_from_memory(addr, &mut file, 128).map_err(|_| ())?;
    /// #     Ok(())
    /// # }
    /// ```
    pub fn write_from_memory<F>(&self,
                                guest_addr: GuestAddress,
                                dst: &mut F,
                                count: usize)
                                -> Result<()>
        where F: Write
    {
        self.do_in_region(guest_addr, move |mapping, offset| {
            mapping
                .write_from_memory(offset, dst, count)
                .map_err(|e| Error::MemoryAccess(guest_addr, e))
        })
    }

    /// Convert a GuestAddress into a pointer in the address space of this
    /// process. This should only be necessary for giving addresses to the
    /// kernel, as with vhost ioctls. Normal reads/writes to guest memory should
    /// be done through `write_from_memory`, `read_obj_from_addr`, etc.
    ///
    /// # Arguments
    /// * `guest_addr` - Guest address to convert.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sys_util::{GuestAddress, GuestMemory};
    /// # fn test_host_addr() -> Result<(), ()> {
    ///     let start_addr = GuestAddress(0x1000);
    ///     let mut gm = GuestMemory::new(&vec![(start_addr, 0x500)]).map_err(|_| ())?;
    ///     let addr = gm.get_host_address(GuestAddress(0x1200)).unwrap();
    ///     println!("Host address is {:p}", addr);
    ///     Ok(())
    /// # }
    /// ```
    pub fn get_host_address(&self, guest_addr: GuestAddress) -> Result<*const u8> {
        self.do_in_region(guest_addr, |mapping, offset| {
            // This is safe; `do_in_region` already checks that offset is in
            // bounds.
            Ok(unsafe { mapping.as_ptr().offset(offset as isize) } as *const u8)
        })
    }

    pub fn do_in_region<F, T>(&self, guest_addr: GuestAddress, cb: F) -> Result<T>
        where F: FnOnce(&MemoryMapping, usize) -> Result<T>
    {
        for region in self.regions.iter() {
            if guest_addr >= region.guest_base && guest_addr < region_end(region) {
                return cb(&region.mapping, guest_addr.offset_from(region.guest_base));
            }
        }
        Err(Error::InvalidGuestAddress(guest_addr))
    }
}

impl VolatileMemory for GuestMemory {
    fn get_slice(&self, offset: usize, count: usize) -> VolatileMemoryResult<VolatileSlice> {
        for region in self.regions.iter() {
            if offset >= region.guest_base.0 && offset < region_end(region).0 {
                return region
                           .mapping
                           .get_slice(offset - region.guest_base.0, count);
            }
        }
        Err(VolatileMemoryError::OutOfBounds { addr: offset })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn two_regions() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x400);
        assert!(GuestMemory::new(&vec![(start_addr1, 0x400), (start_addr2, 0x400)]).is_ok());
    }

    #[test]
    fn overlap_memory() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x1000);
        assert!(GuestMemory::new(&vec![(start_addr1, 0x2000), (start_addr2, 0x2000)]).is_err());
    }

    #[test]
    fn test_read_u64() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x1000);
        let gm = GuestMemory::new(&vec![(start_addr1, 0x1000), (start_addr2, 0x1000)]).unwrap();

        let val1: u64 = 0xaa55aa55aa55aa55;
        let val2: u64 = 0x55aa55aa55aa55aa;
        gm.write_obj_at_addr(val1, GuestAddress(0x500)).unwrap();
        gm.write_obj_at_addr(val2, GuestAddress(0x1000 + 32))
            .unwrap();
        let num1: u64 = gm.read_obj_from_addr(GuestAddress(0x500)).unwrap();
        let num2: u64 = gm.read_obj_from_addr(GuestAddress(0x1000 + 32)).unwrap();
        assert_eq!(val1, num1);
        assert_eq!(val2, num2);
    }

    #[test]
    fn test_ref_load_u64() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x1000);
        let gm = GuestMemory::new(&vec![(start_addr1, 0x1000), (start_addr2, 0x1000)]).unwrap();

        let val1: u64 = 0xaa55aa55aa55aa55;
        let val2: u64 = 0x55aa55aa55aa55aa;
        gm.write_obj_at_addr(val1, GuestAddress(0x500)).unwrap();
        gm.write_obj_at_addr(val2, GuestAddress(0x1000 + 32))
            .unwrap();
        let num1: u64 = gm.get_ref(0x500).unwrap().load();
        let num2: u64 = gm.get_ref(0x1000 + 32).unwrap().load();
        assert_eq!(val1, num1);
        assert_eq!(val2, num2);
    }

    #[test]
    fn test_ref_store_u64() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x1000);
        let gm = GuestMemory::new(&vec![(start_addr1, 0x1000), (start_addr2, 0x1000)]).unwrap();

        let val1: u64 = 0xaa55aa55aa55aa55;
        let val2: u64 = 0x55aa55aa55aa55aa;
        gm.get_ref(0x500).unwrap().store(val1);
        gm.get_ref(0x1000 + 32).unwrap().store(val2);
        let num1: u64 = gm.read_obj_from_addr(GuestAddress(0x500)).unwrap();
        let num2: u64 = gm.read_obj_from_addr(GuestAddress(0x1000 + 32)).unwrap();
        assert_eq!(val1, num1);
        assert_eq!(val2, num2);
    }

    // Get the base address of the mapping for a GuestAddress.
    fn get_mapping(mem: &GuestMemory, addr: GuestAddress) -> Result<*const u8> {
        mem.do_in_region(addr, |mapping, _| Ok(mapping.as_ptr() as *const u8))
    }

    #[test]
    fn guest_to_host() {
        let start_addr1 = GuestAddress(0x0);
        let start_addr2 = GuestAddress(0x100);
        let mem = GuestMemory::new(&vec![(start_addr1, 0x100), (start_addr2, 0x400)]).unwrap();

        // Verify the host addresses match what we expect from the mappings.
        let addr1_base = get_mapping(&mem, start_addr1).unwrap();
        let addr2_base = get_mapping(&mem, start_addr2).unwrap();
        let host_addr1 = mem.get_host_address(start_addr1).unwrap();
        let host_addr2 = mem.get_host_address(start_addr2).unwrap();
        assert_eq!(host_addr1, addr1_base);
        assert_eq!(host_addr2, addr2_base);

        // Check that a bad address returns an error.
        let bad_addr = GuestAddress(0x123456);
        assert!(mem.get_host_address(bad_addr).is_err());
    }
}