summary refs log tree commit diff
path: root/devices/src/usb/xhci/ring_buffer_controller.rs
blob: 6452a57350c8c9a26cdf3b97fe2de74ae7d57b1e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
// Copyright 2019 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use super::ring_buffer_stop_cb::RingBufferStopCallback;
use super::xhci_abi::*;
use std::fmt::{self, Display};
use std::sync::{Arc, MutexGuard};
use sync::Mutex;
use utils::{self, EventHandler, EventLoop};

use sys_util::{Error as SysError, EventFd, GuestAddress, GuestMemory, WatchingEvents};

use super::ring_buffer::RingBuffer;

#[derive(Debug)]
pub enum Error {
    AddEvent(utils::Error),
    CreateEventFd(SysError),
}

type Result<T> = std::result::Result<T, Error>;

impl Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use self::Error::*;

        match self {
            AddEvent(e) => write!(f, "failed to add event to event loop: {}", e),
            CreateEventFd(e) => write!(f, "failed to create event fd: {}", e),
        }
    }
}

#[derive(PartialEq, Copy, Clone)]
enum RingBufferState {
    /// Running: RingBuffer is running, consuming transfer descriptor.
    Running,
    /// Stopping: Some thread requested RingBuffer stop. It will stop when current descriptor is
    /// handled.
    Stopping,
    /// Stopped: RingBuffer already stopped.
    Stopped,
}

/// TransferDescriptorHandler handles transfer descriptor. User should implement this trait and
/// build a ring buffer controller with the struct.
pub trait TransferDescriptorHandler {
    /// Process descriptor asynchronously, write complete_event when done.
    fn handle_transfer_descriptor(
        &self,
        descriptor: TransferDescriptor,
        complete_event: EventFd,
    ) -> std::result::Result<(), ()>;
    /// Stop is called when trying to stop ring buffer controller. Returns true when stop must be
    /// performed asynchronously. This happens because the handler is handling some descriptor
    /// asynchronously, the stop callback of ring buffer controller must be called after the
    /// `async` part is handled or canceled. If the TransferDescriptorHandler decide it could stop
    /// immediately, it could return false.
    /// For example, if a handler submitted a transfer but the transfer has not yet finished. Then
    /// guest kernel requests to stop the ring buffer controller. Transfer descriptor handler will
    /// return true, thus RingBufferController would transfer to Stopping state. It will be stopped
    /// when all pending transfer completed.
    /// On the other hand, if hander does not have any pending transfers, it would return false.
    fn stop(&self) -> bool {
        true
    }
}

/// RingBufferController owns a ring buffer. It lives on a event_loop. It will pop out transfer
/// descriptor and let TransferDescriptorHandler handle it.
pub struct RingBufferController<T: 'static + TransferDescriptorHandler> {
    name: String,
    state: Mutex<RingBufferState>,
    stop_callback: Mutex<Vec<RingBufferStopCallback>>,
    ring_buffer: Mutex<RingBuffer>,
    handler: Mutex<T>,
    event_loop: Arc<EventLoop>,
    event: EventFd,
}

impl<T: 'static + TransferDescriptorHandler> Display for RingBufferController<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "RingBufferController `{}`", self.name)
    }
}

impl<T: Send> RingBufferController<T>
where
    T: 'static + TransferDescriptorHandler,
{
    /// Create a ring buffer controller and add it to event loop.
    pub fn new_with_handler(
        name: String,
        mem: GuestMemory,
        event_loop: Arc<EventLoop>,
        handler: T,
    ) -> Result<Arc<RingBufferController<T>>> {
        let evt = EventFd::new().map_err(Error::CreateEventFd)?;
        let controller = Arc::new(RingBufferController {
            name: name.clone(),
            state: Mutex::new(RingBufferState::Stopped),
            stop_callback: Mutex::new(Vec::new()),
            ring_buffer: Mutex::new(RingBuffer::new(name.clone(), mem)),
            handler: Mutex::new(handler),
            event_loop: event_loop.clone(),
            event: evt,
        });
        let event_handler: Arc<EventHandler> = controller.clone();
        event_loop
            .add_event(
                &controller.event,
                WatchingEvents::empty().set_read(),
                Arc::downgrade(&event_handler),
            )
            .map_err(Error::AddEvent)?;
        Ok(controller)
    }

    fn lock_ring_buffer(&self) -> MutexGuard<RingBuffer> {
        self.ring_buffer.lock()
    }

    /// Set dequeue pointer of the internal ring buffer.
    pub fn set_dequeue_pointer(&self, ptr: GuestAddress) {
        usb_debug!("{}: set dequeue pointer: {:x}", self.name, ptr.0);
        // Fast because this should only happen during xhci setup.
        self.lock_ring_buffer().set_dequeue_pointer(ptr);
    }

    /// Set consumer cycle state.
    pub fn set_consumer_cycle_state(&self, state: bool) {
        usb_debug!("{}: set consumer cycle state: {}", self.name, state);
        // Fast because this should only happen during xhci setup.
        self.lock_ring_buffer().set_consumer_cycle_state(state);
    }

    /// Start the ring buffer.
    pub fn start(&self) {
        usb_debug!("{} started", self.name);
        let mut state = self.state.lock();
        if *state != RingBufferState::Running {
            *state = RingBufferState::Running;
            if let Err(e) = self.event.write(1) {
                error!("cannot start event ring: {}", e);
            }
        }
    }

    /// Stop the ring buffer asynchronously.
    pub fn stop(&self, callback: RingBufferStopCallback) {
        usb_debug!("{} being stopped", self.name);
        let mut state = self.state.lock();
        if *state == RingBufferState::Stopped {
            usb_debug!("{} is already stopped", self.name);
            return;
        }
        if self.handler.lock().stop() {
            *state = RingBufferState::Stopping;
            self.stop_callback.lock().push(callback);
        } else {
            *state = RingBufferState::Stopped;
        }
    }
}

impl<T> Drop for RingBufferController<T>
where
    T: 'static + TransferDescriptorHandler,
{
    fn drop(&mut self) {
        // Remove self from the event loop.
        if let Err(e) = self.event_loop.remove_event_for_fd(&self.event) {
            error!(
                "cannot remove ring buffer controller from event loop: {}",
                e
            );
        }
    }
}

impl<T> EventHandler for RingBufferController<T>
where
    T: 'static + TransferDescriptorHandler + Send,
{
    fn on_event(&self) -> std::result::Result<(), ()> {
        // `self.event` triggers ring buffer controller to run, the value read is not important.
        match self.event.read() {
            Ok(_) => {}
            Err(e) => {
                error!("cannot read from event fd: {}", e);
                return Err(());
            }
        }
        let mut state = self.state.lock();

        match *state {
            RingBufferState::Stopped => return Ok(()),
            RingBufferState::Stopping => {
                usb_debug!("{}: stopping ring buffer controller", self.name);
                *state = RingBufferState::Stopped;
                self.stop_callback.lock().clear();
                return Ok(());
            }
            RingBufferState::Running => {}
        }

        let transfer_descriptor = match self.lock_ring_buffer().dequeue_transfer_descriptor() {
            Ok(t) => t,
            Err(e) => {
                error!("cannot dequeue transfer descriptor: {}", e);
                return Err(());
            }
        };

        let transfer_descriptor = match transfer_descriptor {
            Some(t) => t,
            None => {
                *state = RingBufferState::Stopped;
                self.stop_callback.lock().clear();
                return Ok(());
            }
        };

        let event = match self.event.try_clone() {
            Ok(evt) => evt,
            Err(e) => {
                error!("cannot clone event fd: {}", e);
                return Err(());
            }
        };
        self.handler
            .lock()
            .handle_transfer_descriptor(transfer_descriptor, event)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::mem::size_of;
    use std::sync::mpsc::{channel, Sender};
    use utils::FailHandle;

    struct TestHandler {
        sender: Sender<i32>,
    }

    impl TransferDescriptorHandler for TestHandler {
        fn handle_transfer_descriptor(
            &self,
            descriptor: TransferDescriptor,
            complete_event: EventFd,
        ) -> std::result::Result<(), ()> {
            for atrb in descriptor {
                assert_eq!(atrb.trb.trb_type().unwrap(), TrbType::Normal);
                self.sender.send(atrb.trb.get_parameter() as i32).unwrap();
            }
            complete_event.write(1).unwrap();
            Ok(())
        }
    }

    fn setup_mem() -> GuestMemory {
        let trb_size = size_of::<Trb>() as u64;
        let gm = GuestMemory::new(&vec![(GuestAddress(0), 0x1000)]).unwrap();

        // Structure of ring buffer:
        //  0x100  --> 0x200  --> 0x300
        //  trb 1  |   trb 3  |   trb 5
        //  trb 2  |   trb 4  |   trb 6
        //  l trb  -   l trb  -   l trb to 0x100
        let mut trb = NormalTrb::new();
        trb.set_trb_type(TrbType::Normal as u8);
        trb.set_data_buffer(1);
        trb.set_chain(1);
        gm.write_obj_at_addr(trb.clone(), GuestAddress(0x100))
            .unwrap();

        trb.set_data_buffer(2);
        gm.write_obj_at_addr(trb, GuestAddress(0x100 + trb_size))
            .unwrap();

        let mut ltrb = LinkTrb::new();
        ltrb.set_trb_type(TrbType::Link as u8);
        ltrb.set_ring_segment_pointer(0x200);
        gm.write_obj_at_addr(ltrb, GuestAddress(0x100 + 2 * trb_size))
            .unwrap();

        trb.set_data_buffer(3);
        gm.write_obj_at_addr(trb, GuestAddress(0x200)).unwrap();

        // Chain bit is false.
        trb.set_data_buffer(4);
        trb.set_chain(0);
        gm.write_obj_at_addr(trb, GuestAddress(0x200 + 1 * trb_size))
            .unwrap();

        ltrb.set_ring_segment_pointer(0x300);
        gm.write_obj_at_addr(ltrb, GuestAddress(0x200 + 2 * trb_size))
            .unwrap();

        trb.set_data_buffer(5);
        trb.set_chain(1);
        gm.write_obj_at_addr(trb, GuestAddress(0x300)).unwrap();

        // Chain bit is false.
        trb.set_data_buffer(6);
        trb.set_chain(0);
        gm.write_obj_at_addr(trb, GuestAddress(0x300 + 1 * trb_size))
            .unwrap();

        ltrb.set_ring_segment_pointer(0x100);
        gm.write_obj_at_addr(ltrb, GuestAddress(0x300 + 2 * trb_size))
            .unwrap();
        gm
    }

    #[test]
    fn test_ring_buffer_controller() {
        let (tx, rx) = channel();
        let mem = setup_mem();
        let (l, j) = EventLoop::start(None).unwrap();
        let l = Arc::new(l);
        let controller = RingBufferController::new_with_handler(
            "".to_string(),
            mem,
            l.clone(),
            TestHandler { sender: tx },
        )
        .unwrap();
        controller.set_dequeue_pointer(GuestAddress(0x100));
        controller.set_consumer_cycle_state(false);
        controller.start();
        assert_eq!(rx.recv().unwrap(), 1);
        assert_eq!(rx.recv().unwrap(), 2);
        assert_eq!(rx.recv().unwrap(), 3);
        assert_eq!(rx.recv().unwrap(), 4);
        assert_eq!(rx.recv().unwrap(), 5);
        assert_eq!(rx.recv().unwrap(), 6);
        l.stop();
        j.join().unwrap();
    }
}