summary refs log tree commit diff
path: root/aarch64/src/lib.rs
blob: c53d2c2065334bb407a39097686cff07fe764993 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

extern crate arch;
extern crate byteorder;
extern crate data_model;
extern crate device_manager;
extern crate devices;
extern crate kernel_cmdline;
extern crate kvm;
extern crate kvm_sys;
extern crate libc;
extern crate sys_util;

use std::error::{self, Error as Aarch64Error};
use std::fmt::{self, Display};
use std::fs::File;
use std::io::stdout;
use std::sync::{Arc, Mutex};
use std::ffi::CStr;

use sys_util::{EventFd, GuestAddress, GuestMemory};
use std::os::unix::io::FromRawFd;

use kvm::*;
use kvm_sys::kvm_device_attr;

use arch::Result;
mod fdt;

// We place the kernel at offset 8MB
const AARCH64_KERNEL_OFFSET: u64 = 0x80000;
const AARCH64_FDT_MAX_SIZE: u64 = 0x200000;

// These constants indicate the address space used by the ARM vGIC.
const AARCH64_GIC_DIST_SIZE: u64  = 0x10000;
const AARCH64_GIC_CPUI_SIZE: u64  = 0x20000;

// This indicates the start of DRAM inside the physical address space.
const AARCH64_PHYS_MEM_START: u64 = 0x80000000;
const AARCH64_AXI_BASE: u64       = 0x40000000;

// These constants indicate the placement of the GIC registers in the physical
// address space.
const AARCH64_GIC_DIST_BASE: u64  = AARCH64_AXI_BASE - AARCH64_GIC_DIST_SIZE;
const AARCH64_GIC_CPUI_BASE: u64  = AARCH64_GIC_DIST_BASE -
    AARCH64_GIC_CPUI_SIZE;

// This is the minimum number of SPI interrupts aligned to 32 + 32 for the
// PPI (16) and GSI (16).
const AARCH64_GIC_NR_IRQS: u32 = 64;

 // PSR (Processor State Register) bits
const PSR_MODE_EL1H: u64 = 0x00000005;
const PSR_F_BIT: u64 = 0x00000040;
const PSR_I_BIT: u64 = 0x00000080;
const PSR_A_BIT: u64 = 0x00000100;
const PSR_D_BIT: u64 = 0x00000200;

macro_rules! offset__of {
    ($str:ty, $($field:ident).+ $([$idx:expr])*) => {
        unsafe { &(*(0 as *const $str))$(.$field)*  $([$idx])* as *const _ as usize }
    }
}

const KVM_REG_ARM64: u64    = 0x6000000000000000;
const KVM_REG_SIZE_U64: u64 = 0x0030000000000000;
const KVM_REG_ARM_COPROC_SHIFT: u64 = 16;
const KVM_REG_ARM_CORE: u64 = 0x0010 << KVM_REG_ARM_COPROC_SHIFT;

macro_rules! arm64_core_reg {
    ($reg: tt) => {
        KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | ((offset__of!(kvm_sys::user_pt_regs, $reg) / 4) as u64)
    };
}

fn get_kernel_addr() -> GuestAddress {
    GuestAddress(AARCH64_PHYS_MEM_START + AARCH64_KERNEL_OFFSET)
}

// Place the serial device at a typical address for x86.
const AARCH64_SERIAL_ADDR: u64 = 0x3F8;
// Serial device requires 8 bytes of registers;
const AARCH64_SERIAL_SIZE: u64 = 0x8;
// This was the speed kvmtool used, not sure if it matters.
const AARCH64_SERIAL_SPEED: u32 = 1843200;

// This is the base address of MMIO devices.
const AARCH64_MMIO_BASE: u64 = 0x10000;
// Each MMIO device gets a 4k page.
const AARCH64_MMIO_LEN: u64 = 0x1000;
// We start at 0 which gets mapped to the first SPI interrupt (physical 32).
const AARCH64_IRQ_BASE: u32 = 0;

#[derive(Debug)]
pub enum Error {
    /// FDT could not be created
    FDTCreateFailure(Box<error::Error>),
    /// Kernel could not be loaded
    KernelLoadFailure,
    /// Failure to Create GIC
    CreateGICFailure(sys_util::Error),
    /// VCPU Init failed
    VCPUInitFailure,
    /// VCPU Set one reg failed
    VCPUSetRegFailure,
}

impl error::Error for Error {
    fn description(&self) -> &str {
        match self {
            &Error::FDTCreateFailure(_) =>
                "FDT could not be created",
            &Error::KernelLoadFailure =>
                "Kernel cound not be loaded",
            &Error::CreateGICFailure(_) =>
                "Failure to create GIC",
            &Error::VCPUInitFailure =>
                "Failed to initialize VCPU",
            &Error::VCPUSetRegFailure =>
                "Failed to set register",
        }
    }
}

impl Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Aarch64 Error: {}", Error::description(self))
    }
}

/// Returns a Vec of the valid memory addresses.
/// These should be used to configure the GuestMemory structure for the platfrom.
pub fn arch_memory_regions(size: u64) -> Vec<(GuestAddress, u64)> {
    vec![(GuestAddress(AARCH64_PHYS_MEM_START), size)]
}

fn fdt_offset(mem_size: u64) -> u64 {
    // Put fdt up near the top of memory
    // TODO(sonnyrao): will have to handle this differently if there's
    // > 4GB memory
    mem_size - AARCH64_FDT_MAX_SIZE - 0x10000
}

pub struct AArch64;

impl arch::LinuxArch for AArch64 {
    /// Loads the kernel from an open file.
    ///
    /// # Arguments
    ///
    /// * `mem` - The memory to be used by the guest.
    /// * `kernel_image` - the File object for the specified kernel.
    fn load_kernel(guest_mem: &GuestMemory, mut kernel_image: &mut File) -> Result<()> {
        let kernel_addr = get_kernel_addr();
        let kernel_meta = kernel_image.metadata()?;
        let kernel_size = kernel_meta.len();
        guest_mem.read_to_memory(kernel_addr, &mut kernel_image, kernel_size as usize).
            map_err(|_| Error::KernelLoadFailure)?;
        Ok(())
    }

    fn setup_system_memory(mem: &GuestMemory, mem_size: u64, vcpu_count: u32,
                           cmdline: &CStr) -> Result<()> {
        fdt::create_fdt(AARCH64_FDT_MAX_SIZE as usize,
                        mem,
                        vcpu_count,
                        fdt_offset(mem_size),
                        cmdline)?;
        Ok(())
    }

    fn create_vm(kvm: &Kvm, mem: GuestMemory) -> Result<Vm> {
        let vm = Vm::new(&kvm, mem)?;
        Ok(vm)
    }

    fn setup_memory(mem_size: u64) -> Result<GuestMemory> {
        let arch_mem_regions = arch_memory_regions(mem_size);
        let mem = GuestMemory::new(&arch_mem_regions)?;
        Ok(mem)
    }

    fn get_base_dev_pfn(mem_size: u64) -> u64 {
        AARCH64_PHYS_MEM_START + mem_size
    }

    /// This returns a base part of the kernel command for this architecture
    fn get_base_linux_cmdline() -> kernel_cmdline::Cmdline {
        let mut cmdline = kernel_cmdline::Cmdline::new(sys_util::pagesize());
        cmdline.insert_str("console=ttyS0 reboot=k panic=1").
            unwrap();
        cmdline
    }

    /// This creates and returns a device_manager object for this vm.
    ///
    /// # Arguments
    ///
    /// * `vm` - the vm object
    /// * `mem` - A copy of the GuestMemory object for this VM.
    fn get_device_manager(vm: &mut Vm, mem: GuestMemory) ->
        Result<device_manager::DeviceManager> {
        let mut dm = device_manager::DeviceManager::new(vm,
                                                        mem,
                                                        AARCH64_MMIO_LEN,
                                                        AARCH64_MMIO_BASE,
                                                        AARCH64_IRQ_BASE);
        let com_evt_1_3 = EventFd::new()?;
        let serial = Arc::new(Mutex::new(devices::Serial::new_out(
            com_evt_1_3.try_clone()?,
            Box::new(stdout()))));

            dm.bus.insert(serial.clone(), AARCH64_SERIAL_ADDR,
                          AARCH64_SERIAL_SIZE).expect("failed to add serial device");
        Ok(dm)
    }

    /// The creates the interrupt controller device and optionally returns the fd for it.
    /// Some architectures may not have a separate descriptor for the interrupt
    /// controller, so they would return None even on success.
    ///
    /// # Arguments
    ///
    /// * `vm` - the vm object
    fn create_irq_chip(vm: &Vm) -> Result<Option<File>> {
        let cpu_if_addr: u64 = AARCH64_GIC_CPUI_BASE;
        let dist_if_addr: u64 = AARCH64_GIC_DIST_BASE;
        let raw_cpu_if_addr = &cpu_if_addr as *const u64;
        let raw_dist_if_addr = &dist_if_addr as *const u64;

        let cpu_if_attr = kvm_device_attr {
            group: kvm_sys::KVM_DEV_ARM_VGIC_GRP_ADDR,
            attr: kvm_sys::KVM_VGIC_V2_ADDR_TYPE_CPU as u64,
            addr: raw_cpu_if_addr as u64,
            flags: 0,
        };
        let dist_attr = kvm_device_attr {
            group: kvm_sys::KVM_DEV_ARM_VGIC_GRP_ADDR,
            attr: kvm_sys::KVM_VGIC_V2_ADDR_TYPE_DIST as u64,
            addr: raw_dist_if_addr as u64,
            flags: 0,
        };
        let mut kcd = kvm_sys::kvm_create_device {
            type_: kvm_sys::kvm_device_type_KVM_DEV_TYPE_ARM_VGIC_V2,
            fd: 0,
            flags: 0,
        };
        vm.create_device(&mut kcd).map_err(|e| Error::CreateGICFailure(e))?;

        // Safe because the kernel is passing us an FD back inside
        // the struct after we successfully did the create_device ioctl
        let vgic_fd = unsafe { File::from_raw_fd(kcd.fd as i32) };

        // Safe because we allocated the struct that's being passed in
        let ret = unsafe {
            sys_util::ioctl_with_ref(&vgic_fd, kvm_sys::KVM_SET_DEVICE_ATTR(),
                                     &cpu_if_attr)
        };
        if ret != 0 {
            return Err(Box::new(Error::CreateGICFailure(
                sys_util::Error::new(ret))))
        }

        // Safe because we allocated the struct that's being passed in
        let ret = unsafe {
            sys_util::ioctl_with_ref(&vgic_fd, kvm_sys::KVM_SET_DEVICE_ATTR(),
                                     &dist_attr)
        };
        if ret != 0 {
            return Err(Box::new(Error::CreateGICFailure(
                sys_util::Error::new(ret))))
        }

        // We need to tell the kernel how many irqs to support with this vgic
        let nr_irqs: u32 = AARCH64_GIC_NR_IRQS;
        let nr_irqs_ptr = &nr_irqs as *const u32;
        let nr_irqs_attr = kvm_device_attr {
            group: kvm_sys::KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
            attr: 0,
            addr: nr_irqs_ptr as u64,
            flags: 0,
        };
        // Safe because we allocated the struct that's being passed in
        let ret = unsafe {
            sys_util::ioctl_with_ref(&vgic_fd, kvm_sys::KVM_SET_DEVICE_ATTR(),
                                     &nr_irqs_attr)
        };
        if ret != 0 {
            return Err(Box::new(Error::CreateGICFailure(
                sys_util::Error::new(ret))))
        }

        // Finalize the GIC
        let init_gic_attr = kvm_device_attr {
            group: kvm_sys::KVM_DEV_ARM_VGIC_GRP_CTRL,
            attr: kvm_sys::KVM_DEV_ARM_VGIC_CTRL_INIT as u64,
            addr: 0,
            flags: 0,
        };

        // Safe because we allocated the struct that's being passed in
        let ret = unsafe {
            sys_util::ioctl_with_ref(&vgic_fd, kvm_sys::KVM_SET_DEVICE_ATTR(),
                                     &init_gic_attr)
        };
        if ret != 0 {
            return Err(Box::new(sys_util::Error::new(ret)))
        }
        Ok(Some(vgic_fd))
    }

    fn setup_io_bus(_vm: &mut Vm, _exit_evt: EventFd)
                    -> Result<(devices::Bus, Arc<Mutex<devices::Serial>>)> {
        // ARM doesn't really use the io bus like x86, instead we have a
        // separate serial device that is returned as a separate object.
        let io_bus = devices::Bus::new();
        let com_evt_1_3 = EventFd::new()?;

        let serial = Arc::new(Mutex::new(devices::Serial::new_out(
            com_evt_1_3.try_clone()?,
            Box::new(stdout()))));
        Ok((io_bus, serial))
    }

    fn configure_vcpu(guest_mem: &GuestMemory,
                      _kvm: &Kvm,
                      vm: &Vm,
                      vcpu: &Vcpu,
                      cpu_id: u64,
                      _num_cpus: u64)
                      -> Result<()> {
        let mut kvi = kvm_sys::kvm_vcpu_init {
            target: kvm_sys::KVM_ARM_TARGET_GENERIC_V8,
            features: [0; 7],
        };

        // This reads back the kernel's preferred target type.
        vm.arm_preferred_target(&mut kvi)?;

        // TODO(sonnyrao): need to verify this feature is supported by host kernel
        kvi.features[0] |= 1 << kvm_sys::KVM_ARM_VCPU_PSCI_0_2;

        // Non-boot cpus are powered off initially
        if cpu_id > 0 {
            kvi.features[0] |= 1 << kvm_sys::KVM_ARM_VCPU_POWER_OFF;
        }
        vcpu.arm_vcpu_init(&kvi)?;

        // set up registers
        let mut data: u64;
        let mut reg_id: u64;

        // All interrupts masked
        data    = PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT | PSR_MODE_EL1H;
        reg_id  = arm64_core_reg!(pstate);
        vcpu.set_one_reg(reg_id, data)?;

        // Other cpus are powered off initially
        if cpu_id == 0 {
            data    = AARCH64_PHYS_MEM_START + AARCH64_KERNEL_OFFSET;
            reg_id  = arm64_core_reg!(pc);
            vcpu.set_one_reg(reg_id, data)?;

            /* X0 -- fdt address */
            let mem_size = guest_mem.memory_size();
            data    = (AARCH64_PHYS_MEM_START + fdt_offset(mem_size)) as u64;
            // hack -- can't get this to do offsetof(regs[0]) but luckily it's at offset 0
            reg_id  = arm64_core_reg!(regs);
            vcpu.set_one_reg(reg_id, data)?;
        }
        Ok(())
    }

}