summary refs log tree commit diff
path: root/aarch64/src/fdt.rs
blob: 19662c6b8ffa011a98020ca6c5d83d8c11677649 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::ffi::CStr;
use std::fs::File;
use std::io::Read;

use arch::fdt::{
    begin_node, end_node, finish_fdt, generate_prop32, generate_prop64, property, property_cstring,
    property_null, property_string, property_u32, property_u64, start_fdt, Error, Result,
};
use arch::SERIAL_ADDR;
use devices::{PciAddress, PciInterruptPin};
use sys_util::{GuestAddress, GuestMemory};

// This is the start of DRAM in the physical address space.
use crate::AARCH64_PHYS_MEM_START;

// These are GIC address-space location constants.
use crate::AARCH64_GIC_CPUI_BASE;
use crate::AARCH64_GIC_CPUI_SIZE;
use crate::AARCH64_GIC_DIST_BASE;
use crate::AARCH64_GIC_DIST_SIZE;
use crate::AARCH64_GIC_REDIST_SIZE;

// These are RTC related constants
use crate::AARCH64_RTC_ADDR;
use crate::AARCH64_RTC_IRQ;
use crate::AARCH64_RTC_SIZE;
use devices::pl030::PL030_AMBA_ID;

// These are serial device related constants.
use crate::AARCH64_SERIAL_1_3_IRQ;
use crate::AARCH64_SERIAL_2_4_IRQ;
use crate::AARCH64_SERIAL_SIZE;
use crate::AARCH64_SERIAL_SPEED;

// These are related to guest virtio devices.
use crate::AARCH64_MMIO_BASE;
use crate::AARCH64_MMIO_SIZE;
use crate::AARCH64_PCI_CFG_BASE;
use crate::AARCH64_PCI_CFG_SIZE;

use crate::AARCH64_PMU_IRQ;

// This is an arbitrary number to specify the node for the GIC.
// If we had a more complex interrupt architecture, then we'd need an enum for
// these.
const PHANDLE_GIC: u32 = 1;

// These are specified by the Linux GIC bindings
const GIC_FDT_IRQ_NUM_CELLS: u32 = 3;
const GIC_FDT_IRQ_TYPE_SPI: u32 = 0;
const GIC_FDT_IRQ_TYPE_PPI: u32 = 1;
const GIC_FDT_IRQ_PPI_CPU_SHIFT: u32 = 8;
const GIC_FDT_IRQ_PPI_CPU_MASK: u32 = (0xff << GIC_FDT_IRQ_PPI_CPU_SHIFT);
const IRQ_TYPE_EDGE_RISING: u32 = 0x00000001;
const IRQ_TYPE_LEVEL_HIGH: u32 = 0x00000004;
const IRQ_TYPE_LEVEL_LOW: u32 = 0x00000008;

fn create_memory_node(fdt: &mut Vec<u8>, guest_mem: &GuestMemory) -> Result<()> {
    let mem_size = guest_mem.memory_size();
    let mem_reg_prop = generate_prop64(&[AARCH64_PHYS_MEM_START, mem_size]);

    begin_node(fdt, "memory")?;
    property_string(fdt, "device_type", "memory")?;
    property(fdt, "reg", &mem_reg_prop)?;
    end_node(fdt)?;
    Ok(())
}

fn create_cpu_nodes(fdt: &mut Vec<u8>, num_cpus: u32) -> Result<()> {
    begin_node(fdt, "cpus")?;
    property_u32(fdt, "#address-cells", 0x1)?;
    property_u32(fdt, "#size-cells", 0x0)?;

    for cpu_id in 0..num_cpus {
        let cpu_name = format!("cpu@{:x}", cpu_id);
        begin_node(fdt, &cpu_name)?;
        property_string(fdt, "device_type", "cpu")?;
        property_string(fdt, "compatible", "arm,arm-v8")?;
        if num_cpus > 1 {
            property_string(fdt, "enable-method", "psci")?;
        }
        property_u32(fdt, "reg", cpu_id)?;
        end_node(fdt)?;
    }
    end_node(fdt)?;
    Ok(())
}

fn create_gic_node(fdt: &mut Vec<u8>, is_gicv3: bool, num_cpus: u64) -> Result<()> {
    let mut gic_reg_prop = [AARCH64_GIC_DIST_BASE, AARCH64_GIC_DIST_SIZE, 0, 0];

    begin_node(fdt, "intc")?;
    if is_gicv3 {
        property_string(fdt, "compatible", "arm,gic-v3")?;
        gic_reg_prop[2] = AARCH64_GIC_DIST_BASE - (AARCH64_GIC_REDIST_SIZE * num_cpus);
        gic_reg_prop[3] = AARCH64_GIC_REDIST_SIZE * num_cpus;
    } else {
        property_string(fdt, "compatible", "arm,cortex-a15-gic")?;
        gic_reg_prop[2] = AARCH64_GIC_CPUI_BASE;
        gic_reg_prop[3] = AARCH64_GIC_CPUI_SIZE;
    }
    let gic_reg_prop = generate_prop64(&gic_reg_prop);
    property_u32(fdt, "#interrupt-cells", GIC_FDT_IRQ_NUM_CELLS)?;
    property_null(fdt, "interrupt-controller")?;
    property(fdt, "reg", &gic_reg_prop)?;
    property_u32(fdt, "phandle", PHANDLE_GIC)?;
    property_u32(fdt, "#address-cells", 2)?;
    property_u32(fdt, "#size-cells", 2)?;
    end_node(fdt)?;

    Ok(())
}

fn create_timer_node(fdt: &mut Vec<u8>, num_cpus: u32) -> Result<()> {
    // These are fixed interrupt numbers for the timer device.
    let irqs = [13, 14, 11, 10];
    let compatible = "arm,armv8-timer";
    let cpu_mask: u32 =
        (((1 << num_cpus) - 1) << GIC_FDT_IRQ_PPI_CPU_SHIFT) & GIC_FDT_IRQ_PPI_CPU_MASK;

    let mut timer_reg_cells = Vec::new();
    for &irq in &irqs {
        timer_reg_cells.push(GIC_FDT_IRQ_TYPE_PPI);
        timer_reg_cells.push(irq);
        timer_reg_cells.push(cpu_mask | IRQ_TYPE_LEVEL_LOW);
    }
    let timer_reg_prop = generate_prop32(timer_reg_cells.as_slice());

    begin_node(fdt, "timer")?;
    property_string(fdt, "compatible", compatible)?;
    property(fdt, "interrupts", &timer_reg_prop)?;
    property_null(fdt, "always-on")?;
    end_node(fdt)?;

    Ok(())
}

fn create_pmu_node(fdt: &mut Vec<u8>, num_cpus: u32) -> Result<()> {
    let compatible = "arm,armv8-pmuv3";
    let cpu_mask: u32 =
        (((1 << num_cpus) - 1) << GIC_FDT_IRQ_PPI_CPU_SHIFT) & GIC_FDT_IRQ_PPI_CPU_MASK;
    let irq = generate_prop32(&[
        GIC_FDT_IRQ_TYPE_PPI,
        AARCH64_PMU_IRQ,
        cpu_mask | IRQ_TYPE_LEVEL_HIGH,
    ]);

    begin_node(fdt, "pmu")?;
    property_string(fdt, "compatible", compatible)?;
    property(fdt, "interrupts", &irq)?;
    end_node(fdt)?;
    Ok(())
}

fn create_serial_node(fdt: &mut Vec<u8>, addr: u64, irq: u32) -> Result<()> {
    let serial_reg_prop = generate_prop64(&[addr, AARCH64_SERIAL_SIZE]);
    let irq = generate_prop32(&[GIC_FDT_IRQ_TYPE_SPI, irq, IRQ_TYPE_EDGE_RISING]);

    begin_node(fdt, &format!("U6_16550A@{:x}", addr))?;
    property_string(fdt, "compatible", "ns16550a")?;
    property(fdt, "reg", &serial_reg_prop)?;
    property_u32(fdt, "clock-frequency", AARCH64_SERIAL_SPEED)?;
    property(fdt, "interrupts", &irq)?;
    end_node(fdt)?;

    Ok(())
}

fn create_serial_nodes(fdt: &mut Vec<u8>) -> Result<()> {
    // Note that SERIAL_ADDR contains the I/O port addresses conventionally used
    // for serial ports on x86. This uses the same addresses (but on the MMIO bus)
    // to simplify the shared serial code.
    create_serial_node(fdt, SERIAL_ADDR[0], AARCH64_SERIAL_1_3_IRQ)?;
    create_serial_node(fdt, SERIAL_ADDR[1], AARCH64_SERIAL_2_4_IRQ)?;
    create_serial_node(fdt, SERIAL_ADDR[2], AARCH64_SERIAL_1_3_IRQ)?;
    create_serial_node(fdt, SERIAL_ADDR[3], AARCH64_SERIAL_2_4_IRQ)?;

    Ok(())
}

// TODO(sonnyrao) -- check to see if host kernel supports PSCI 0_2
fn create_psci_node(fdt: &mut Vec<u8>) -> Result<()> {
    let compatible = "arm,psci-0.2";
    begin_node(fdt, "psci")?;
    property_string(fdt, "compatible", compatible)?;
    // Only support aarch64 guest
    property_string(fdt, "method", "hvc")?;
    // These constants are from PSCI
    property_u32(fdt, "cpu_suspend", 0xc4000001)?;
    property_u32(fdt, "cpu_off", 0x84000002)?;
    property_u32(fdt, "cpu_on", 0xc4000003)?;
    property_u32(fdt, "migrate", 0xc4000005)?;
    end_node(fdt)?;

    Ok(())
}

fn create_chosen_node(
    fdt: &mut Vec<u8>,
    cmdline: &CStr,
    initrd: Option<(GuestAddress, usize)>,
) -> Result<()> {
    begin_node(fdt, "chosen")?;
    property_u32(fdt, "linux,pci-probe-only", 1)?;
    property_cstring(fdt, "bootargs", cmdline)?;

    let mut random_file = File::open("/dev/urandom").map_err(Error::FdtIoError)?;
    let mut kaslr_seed_bytes = [0u8; 8];
    random_file
        .read_exact(&mut kaslr_seed_bytes)
        .map_err(Error::FdtIoError)?;
    let kaslr_seed = u64::from_le_bytes(kaslr_seed_bytes);
    property_u64(fdt, "kaslr-seed", kaslr_seed)?;

    let mut rng_seed_bytes = [0u8; 256];
    random_file
        .read_exact(&mut rng_seed_bytes)
        .map_err(Error::FdtIoError)?;
    property(fdt, "rng-seed", &rng_seed_bytes)?;

    if let Some((initrd_addr, initrd_size)) = initrd {
        let initrd_start = initrd_addr.offset() as u32;
        let initrd_end = initrd_start + initrd_size as u32;
        property_u32(fdt, "linux,initrd-start", initrd_start)?;
        property_u32(fdt, "linux,initrd-end", initrd_end)?;
    }
    end_node(fdt)?;

    Ok(())
}

fn create_pci_nodes(
    fdt: &mut Vec<u8>,
    pci_irqs: Vec<(PciAddress, u32, PciInterruptPin)>,
    pci_device_base: u64,
    pci_device_size: u64,
) -> Result<()> {
    // Add devicetree nodes describing a PCI generic host controller.
    // See Documentation/devicetree/bindings/pci/host-generic-pci.txt in the kernel
    // and "PCI Bus Binding to IEEE Std 1275-1994".
    let ranges = generate_prop32(&[
        // mmio addresses
        0x3000000,                        // (ss = 11: 64-bit memory space)
        (AARCH64_MMIO_BASE >> 32) as u32, // PCI address
        AARCH64_MMIO_BASE as u32,
        (AARCH64_MMIO_BASE >> 32) as u32, // CPU address
        AARCH64_MMIO_BASE as u32,
        (AARCH64_MMIO_SIZE >> 32) as u32, // size
        AARCH64_MMIO_SIZE as u32,
        // device addresses
        0x3000000,                      // (ss = 11: 64-bit memory space)
        (pci_device_base >> 32) as u32, // PCI address
        pci_device_base as u32,
        (pci_device_base >> 32) as u32, // CPU address
        pci_device_base as u32,
        (pci_device_size >> 32) as u32, // size
        pci_device_size as u32,
    ]);
    let bus_range = generate_prop32(&[0, 0]); // Only bus 0
    let reg = generate_prop64(&[AARCH64_PCI_CFG_BASE, AARCH64_PCI_CFG_SIZE]);

    let mut interrupts: Vec<u32> = Vec::new();
    let mut masks: Vec<u32> = Vec::new();

    for (address, irq_num, irq_pin) in pci_irqs.iter() {
        // PCI_DEVICE(3)
        interrupts.push(address.to_config_address(0));
        interrupts.push(0);
        interrupts.push(0);

        // INT#(1)
        interrupts.push(irq_pin.to_mask() + 1);

        // CONTROLLER(PHANDLE)
        interrupts.push(PHANDLE_GIC);
        interrupts.push(0);
        interrupts.push(0);

        // CONTROLLER_DATA(3)
        interrupts.push(GIC_FDT_IRQ_TYPE_SPI);
        interrupts.push(*irq_num);
        interrupts.push(IRQ_TYPE_LEVEL_HIGH);

        // PCI_DEVICE(3)
        masks.push(0xf800); // bits 11..15 (device)
        masks.push(0);
        masks.push(0);

        // INT#(1)
        masks.push(0x7); // allow INTA#-INTD# (1 | 2 | 3 | 4)
    }

    let interrupt_map = generate_prop32(&interrupts);
    let interrupt_map_mask = generate_prop32(&masks);

    begin_node(fdt, "pci")?;
    property_string(fdt, "compatible", "pci-host-cam-generic")?;
    property_string(fdt, "device_type", "pci")?;
    property(fdt, "ranges", &ranges)?;
    property(fdt, "bus-range", &bus_range)?;
    property_u32(fdt, "#address-cells", 3)?;
    property_u32(fdt, "#size-cells", 2)?;
    property(fdt, "reg", &reg)?;
    property_u32(fdt, "#interrupt-cells", 1)?;
    property(fdt, "interrupt-map", &interrupt_map)?;
    property(fdt, "interrupt-map-mask", &interrupt_map_mask)?;
    property_null(fdt, "dma-coherent")?;
    end_node(fdt)?;

    Ok(())
}

fn create_rtc_node(fdt: &mut Vec<u8>) -> Result<()> {
    // the kernel driver for pl030 really really wants a clock node
    // associated with an AMBA device or it will fail to probe, so we
    // need to make up a clock node to associate with the pl030 rtc
    // node and an associated handle with a unique phandle value.
    const CLK_PHANDLE: u32 = 24;
    begin_node(fdt, "pclk@3M")?;
    property_u32(fdt, "#clock-cells", 0)?;
    property_string(fdt, "compatible", "fixed-clock")?;
    property_u32(fdt, "clock-frequency", 3141592)?;
    property_u32(fdt, "phandle", CLK_PHANDLE)?;
    end_node(fdt)?;

    let rtc_name = format!("rtc@{:x}", AARCH64_RTC_ADDR);
    let reg = generate_prop64(&[AARCH64_RTC_ADDR, AARCH64_RTC_SIZE]);
    let irq = generate_prop32(&[GIC_FDT_IRQ_TYPE_SPI, AARCH64_RTC_IRQ, IRQ_TYPE_LEVEL_HIGH]);

    begin_node(fdt, &rtc_name)?;
    property_string(fdt, "compatible", "arm,primecell")?;
    property_u32(fdt, "arm,primecell-periphid", PL030_AMBA_ID)?;
    property(fdt, "reg", &reg)?;
    property(fdt, "interrupts", &irq)?;
    property_u32(fdt, "clocks", CLK_PHANDLE)?;
    property_string(fdt, "clock-names", "apb_pclk")?;
    end_node(fdt)?;
    Ok(())
}

/// Creates a flattened device tree containing all of the parameters for the
/// kernel and loads it into the guest memory at the specified offset.
///
/// # Arguments
///
/// * `fdt_max_size` - The amount of space reserved for the device tree
/// * `guest_mem` - The guest memory object
/// * `pci_irqs` - List of PCI device address to PCI interrupt number and pin mappings
/// * `num_cpus` - Number of virtual CPUs the guest will have
/// * `fdt_load_offset` - The offset into physical memory for the device tree
/// * `pci_device_base` - The offset into physical memory for PCI device memory
/// * `pci_device_size` - The size of PCI device memory
/// * `cmdline` - The kernel commandline
/// * `initrd` - An optional tuple of initrd guest physical address and size
/// * `android_fstab` - An optional file holding Android fstab entries
/// * `is_gicv3` - True if gicv3, false if v2
pub fn create_fdt(
    fdt_max_size: usize,
    guest_mem: &GuestMemory,
    pci_irqs: Vec<(PciAddress, u32, PciInterruptPin)>,
    num_cpus: u32,
    fdt_load_offset: u64,
    pci_device_base: u64,
    pci_device_size: u64,
    cmdline: &CStr,
    initrd: Option<(GuestAddress, usize)>,
    android_fstab: Option<File>,
    is_gicv3: bool,
    use_pmu: bool,
) -> Result<()> {
    let mut fdt = vec![0; fdt_max_size];
    start_fdt(&mut fdt, fdt_max_size)?;

    // The whole thing is put into one giant node with some top level properties
    begin_node(&mut fdt, "")?;
    property_u32(&mut fdt, "interrupt-parent", PHANDLE_GIC)?;
    property_string(&mut fdt, "compatible", "linux,dummy-virt")?;
    property_u32(&mut fdt, "#address-cells", 0x2)?;
    property_u32(&mut fdt, "#size-cells", 0x2)?;
    if let Some(android_fstab) = android_fstab {
        arch::android::create_android_fdt(&mut fdt, android_fstab)?;
    }
    create_chosen_node(&mut fdt, cmdline, initrd)?;
    create_memory_node(&mut fdt, guest_mem)?;
    create_cpu_nodes(&mut fdt, num_cpus)?;
    create_gic_node(&mut fdt, is_gicv3, num_cpus as u64)?;
    create_timer_node(&mut fdt, num_cpus)?;
    if use_pmu {
        create_pmu_node(&mut fdt, num_cpus)?;
    }
    create_serial_nodes(&mut fdt)?;
    create_psci_node(&mut fdt)?;
    create_pci_nodes(&mut fdt, pci_irqs, pci_device_base, pci_device_size)?;
    create_rtc_node(&mut fdt)?;
    // End giant node
    end_node(&mut fdt)?;

    // Allocate another buffer so we can format and then write fdt to guest
    let mut fdt_final = vec![0; fdt_max_size];
    finish_fdt(&mut fdt, &mut fdt_final, fdt_max_size)?;

    let fdt_address = GuestAddress(AARCH64_PHYS_MEM_START + fdt_load_offset);
    let written = guest_mem
        .write_at_addr(fdt_final.as_slice(), fdt_address)
        .map_err(|_| Error::FdtGuestMemoryWriteError)?;
    if written < fdt_max_size {
        return Err(Error::FdtGuestMemoryWriteError);
    }
    Ok(())
}