summary refs log tree commit diff
path: root/pkgs/lib/lists.nix
blob: b50da022283bfd0406c46f4fccd249384f2ff1f3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# General list operations.

rec {
  inherit (builtins) elemAt head tail length isList add sub lessThan;


  # Create a list consisting of a single element.  `singleton x' is
  # sometimes more convenient with respect to indentation than `[x]'
  # when x spans multiple lines.
  singleton = x: [x];
  

  # "Fold" a binary function `op' between successive elements of
  # `list' with `nul' as the starting value, i.e., `fold op nul [x_1
  # x_2 ... x_n] == op x_1 (op x_2 ... (op x_n nul))'.  (This is
  # Haskell's foldr).
  fold =
    if builtins ? elemAt
    then op: nul: list:
      let
        len = length list;
        fold' = n:
          if n == len
          then nul
          else op (elemAt list n) (fold' (add n 1));
      in fold' 0
    else op: nul:
      let fold' = list:
        if list == []
        then nul
        else op (head list) (fold' (tail list));
      in fold';

    
  # Left fold: `fold op nul [x_1 x_2 ... x_n] == op (... (op (op nul
  # x_1) x_2) ... x_n)'.
  foldl =
    if builtins ? elemAt
    then op: nul: list:
      let
        len = length list;
        foldl' = n:
          if n == minus1
          then nul
          else op (foldl' (sub n 1)) (elemAt list n);
      in foldl' (sub (length list) 1)
    else op:
      let foldl' = nul: list:
        if list == []
        then nul
        else foldl' (op nul (head list)) (tail list);
      in foldl';

  minus1 = sub 0 1;


  # map with index: `imap (i: v: "${v}-${toString i}") ["a" "b"] ==
  # ["a-1" "b-2"]'
  imap = f: list:
    zipListsWith f (range 1 (length list)) list;

    
  # Concatenate a list of lists.
  concatLists = builtins.concatLists or (fold (x: y: x ++ y) []);


  # Map and concatenate the result.
  concatMap = f: list: concatLists (map f list);


  # Flatten the argument into a single list; that is, nested lists are
  # spliced into the top-level lists.  E.g., `flatten [1 [2 [3] 4] 5]
  # == [1 2 3 4 5]' and `flatten 1 == [1]'.
  flatten = x:
    if isList x
    then fold (x: y: (flatten x) ++ y) [] x
    else [x];

    
  # Filter a list using a predicate; that is, return a list containing
  # every element from `list' for which `pred' returns true.
  filter =
    builtins.filter or
    (pred: list:
      fold (x: y: if pred x then [x] ++ y else y) [] list);

    
  # Remove elements equal to 'e' from a list.  Useful for buildInputs.
  remove = e: filter (x: x != e);

  
  # Given two lists, removes all elements of the first list from the second list
  removeList = l: filter (x: elem x l);


  # Return true if `list' has an element `x'.
  elem =
    builtins.elem or
    (x: list: fold (a: bs: x == a || bs) false list);


  # Find the sole element in the list matching the specified
  # predicate, returns `default' if no such element exists, or
  # `multiple' if there are multiple matching elements.
  findSingle = pred: default: multiple: list:
    let found = filter pred list;
    in if found == [] then default
       else if tail found != [] then multiple
       else head found;


  # Find the first element in the list matching the specified
  # predicate or returns `default' if no such element exists.
  findFirst = pred: default: list:
    let found = filter pred list;
    in if found == [] then default else head found;
       

  # Return true iff function `pred' returns true for at least element
  # of `list'.
  any = pred: fold (x: y: if pred x then true else y) false;


  # Return true iff function `pred' returns true for all elements of
  # `list'.
  all = pred: fold (x: y: if pred x then y else false) true;


  # Return a singleton list or an empty list, depending on a boolean
  # value.  Useful when building lists with optional elements
  # (e.g. `++ optional (system == "i686-linux") flashplayer').
  optional = cond: elem: if cond then [elem] else [];


  # Return a list or an empty list, dependening on a boolean value.
  optionals = cond: elems: if cond then elems else [];


  # If argument is a list, return it; else, wrap it in a singleton
  # list.  If you're using this, you should almost certainly
  # reconsider if there isn't a more "well-typed" approach.
  toList = x: if builtins.isList x then x else [x];

    
  # Return a list of integers from `first' up to and including `last'.
  range = first: last:
    if builtins.lessThan last first
    then []
    else [first] ++ range (builtins.add first 1) last;

    
  # Partition the elements of a list in two lists, `right' and
  # `wrong', depending on the evaluation of a predicate.
  partition = pred:
    fold (h: t:
      if pred h
      then { right = [h] ++ t.right; wrong = t.wrong; }
      else { right = t.right; wrong = [h] ++ t.wrong; }
    ) { right = []; wrong = []; };


  zipListsWith = f: fst: snd:
    if fst != [] && snd != [] then
      [ (f (head fst) (head snd)) ]
      ++ zipListsWith f (tail fst) (tail snd)
    else [];

  zipLists = zipListsWith (fst: snd: { inherit fst snd; });

  
  # Reverse the order of the elements of a list.
  reverseList = l:
    let reverse_ = accu: l:
      if l == [] then accu
      else reverse_ ([(head l)] ++ accu) (tail l);
    in reverse_ [] l;

    
  # Sort a list based on a comparator function which compares two
  # elements and returns true if the first argument is strictly below
  # the second argument.  The returned list is sorted in an increasing
  # order.  The implementation does a quick-sort.
  sort = strictLess: list:
    let
      # This implementation only has one element list on the left hand
      # side of the concatenation operator.
      qs = l: concat:
        if l == [] then concat
        else if length l == 1 then l ++ concat
        else let
          part = partition (strictLess (head l)) (tail l);
        in
          qs part.wrong ([(head l)] ++ qs part.right []);
    in
      qs list [];


  # Return the first (at most) N elements of a list.
  take = count: list:
    if list == [] || count == 0 then []
    else [ (head list) ] ++ take (builtins.sub count 1) (tail list);

    
  # Remove the first (at most) N elements of a list.
  drop = count: list:
    if count == 0 then list
    else drop (builtins.sub count 1) (tail list);

    
  last = list:
    assert list != [];
    let loop = l: if tail l == [] then head l else loop (tail l); in
    loop list;


  # Zip two lists together.
  zipTwoLists = xs: ys:
    if xs != [] && ys != [] then
      [ {first = head xs; second = head ys;} ]
      ++ zipTwoLists (tail xs) (tail ys)
    else [];

}