# Define the list of system with their properties. # # See https://clang.llvm.org/docs/CrossCompilation.html and # http://llvm.org/docs/doxygen/html/Triple_8cpp_source.html especially # Triple::normalize. Parsing should essentially act as a more conservative # version of that last function. # # Most of the types below come in "open" and "closed" pairs. The open ones # specify what information we need to know about systems in general, and the # closed ones are sub-types representing the whitelist of systems we support in # practice. # # Code in the remainder of nixpkgs shouldn't rely on the closed ones in # e.g. exhaustive cases. Its more a sanity check to make sure nobody defines # systems that overlap with existing ones and won't notice something amiss. # { lib }: with lib.lists; with lib.types; with lib.attrsets; with lib.strings; with (import ./inspect.nix { inherit lib; }).predicates; let inherit (lib.options) mergeOneOption; setTypes = type: mapAttrs (name: value: assert type.check value; setType type.name ({ inherit name; } // value)); in rec { ################################################################################ types.openSignificantByte = mkOptionType { name = "significant-byte"; description = "Endianness"; merge = mergeOneOption; }; types.significantByte = enum (attrValues significantBytes); significantBytes = setTypes types.openSignificantByte { bigEndian = {}; littleEndian = {}; }; ################################################################################ # Reasonable power of 2 types.bitWidth = enum [ 8 16 32 64 128 ]; ################################################################################ types.openCpuType = mkOptionType { name = "cpu-type"; description = "instruction set architecture name and information"; merge = mergeOneOption; check = x: types.bitWidth.check x.bits && (if 8 < x.bits then types.significantByte.check x.significantByte else !(x ? significantByte)); }; types.cpuType = enum (attrValues cpuTypes); cpuTypes = with significantBytes; setTypes types.openCpuType { arm = { bits = 32; significantByte = littleEndian; family = "arm"; }; armv5tel = { bits = 32; significantByte = littleEndian; family = "arm"; version = "5"; arch = "armv5t"; }; armv6m = { bits = 32; significantByte = littleEndian; family = "arm"; version = "6"; arch = "armv6-m"; }; armv6l = { bits = 32; significantByte = littleEndian; family = "arm"; version = "6"; arch = "armv6"; }; armv7a = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7-a"; }; armv7r = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7-r"; }; armv7m = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7-m"; }; armv7l = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7"; }; armv8a = { bits = 32; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-a"; }; armv8r = { bits = 32; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-a"; }; armv8m = { bits = 32; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-m"; }; aarch64 = { bits = 64; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-a"; }; aarch64_be = { bits = 64; significantByte = bigEndian; family = "arm"; version = "8"; arch = "armv8-a"; }; i386 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i386"; }; i486 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i486"; }; i586 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i586"; }; i686 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i686"; }; x86_64 = { bits = 64; significantByte = littleEndian; family = "x86"; arch = "x86-64"; }; mips = { bits = 32; significantByte = bigEndian; family = "mips"; }; mipsel = { bits = 32; significantByte = littleEndian; family = "mips"; }; mips64 = { bits = 64; significantByte = bigEndian; family = "mips"; }; mips64el = { bits = 64; significantByte = littleEndian; family = "mips"; }; mmix = { bits = 64; significantByte = bigEndian; family = "mmix"; }; m68k = { bits = 32; significantByte = bigEndian; family = "m68k"; }; powerpc = { bits = 32; significantByte = bigEndian; family = "power"; }; powerpc64 = { bits = 64; significantByte = bigEndian; family = "power"; }; powerpc64le = { bits = 64; significantByte = littleEndian; family = "power"; }; powerpcle = { bits = 32; significantByte = littleEndian; family = "power"; }; riscv32 = { bits = 32; significantByte = littleEndian; family = "riscv"; }; riscv64 = { bits = 64; significantByte = littleEndian; family = "riscv"; }; s390 = { bits = 32; significantByte = bigEndian; family = "s390"; }; sparc = { bits = 32; significantByte = bigEndian; family = "sparc"; }; sparc64 = { bits = 64; significantByte = bigEndian; family = "sparc"; }; wasm32 = { bits = 32; significantByte = littleEndian; family = "wasm"; }; wasm64 = { bits = 64; significantByte = littleEndian; family = "wasm"; }; alpha = { bits = 64; significantByte = littleEndian; family = "alpha"; }; msp430 = { bits = 16; significantByte = littleEndian; family = "msp430"; }; avr = { bits = 8; family = "avr"; }; vc4 = { bits = 32; significantByte = littleEndian; family = "vc4"; }; or1k = { bits = 32; significantByte = bigEndian; family = "or1k"; }; js = { bits = 32; significantByte = littleEndian; family = "js"; }; }; # GNU build systems assume that older NetBSD architectures are using a.out. gnuNetBSDDefaultExecFormat = cpu: if (cpu.family == "x86" && cpu.bits == 32) || (cpu.family == "arm" && cpu.bits == 32) || (cpu.family == "sparc" && cpu.bits == 32) then execFormats.aout else execFormats.elf; # Determine when two CPUs are compatible with each other. That is, # can code built for system B run on system A? For that to happen, # the programs that system B accepts must be a subset of the # programs that system A accepts. # # We have the following properties of the compatibility relation, # which must be preserved when adding compatibility information for # additional CPUs. # - (reflexivity) # Every CPU is compatible with itself. # - (transitivity) # If A is compatible with B and B is compatible with C then A is compatible with C. # - (compatible under multiple endianness) # CPUs with multiple modes of endianness are pairwise compatible. isCompatible = a: b: with cpuTypes; lib.any lib.id [ # x86 (b == i386 && isCompatible a i486) (b == i486 && isCompatible a i586) (b == i586 && isCompatible a i686) # XXX: Not true in some cases. Like in WSL mode. (b == i686 && isCompatible a x86_64) # ARMv4 (b == arm && isCompatible a armv5tel) # ARMv5 (b == armv5tel && isCompatible a armv6l) # ARMv6 (b == armv6l && isCompatible a armv6m) (b == armv6m && isCompatible a armv7l) # ARMv7 (b == armv7l && isCompatible a armv7a) (b == armv7l && isCompatible a armv7r) (b == armv7l && isCompatible a armv7m) (b == armv7a && isCompatible a armv8a) (b == armv7r && isCompatible a armv8a) (b == armv7m && isCompatible a armv8a) (b == armv7a && isCompatible a armv8r) (b == armv7r && isCompatible a armv8r) (b == armv7m && isCompatible a armv8r) (b == armv7a && isCompatible a armv8m) (b == armv7r && isCompatible a armv8m) (b == armv7m && isCompatible a armv8m) # ARMv8 (b == armv8r && isCompatible a armv8a) (b == armv8m && isCompatible a armv8a) # XXX: not always true! Some arm64 cpus don’t support arm32 mode. (b == aarch64 && a == armv8a) (b == armv8a && isCompatible a aarch64) (b == aarch64 && a == aarch64_be) (b == aarch64_be && isCompatible a aarch64) # PowerPC (b == powerpc && isCompatible a powerpc64) (b == powerpcle && isCompatible a powerpc) (b == powerpc && a == powerpcle) (b == powerpc64le && isCompatible a powerpc64) (b == powerpc64 && a == powerpc64le) # MIPS (b == mips && isCompatible a mips64) (b == mips && a == mipsel) (b == mipsel && isCompatible a mips) (b == mips64 && a == mips64el) (b == mips64el && isCompatible a mips64) # RISCV (b == riscv32 && isCompatible a riscv64) # SPARC (b == sparc && isCompatible a sparc64) # WASM (b == wasm32 && isCompatible a wasm64) # identity (b == a) ]; ################################################################################ types.openVendor = mkOptionType { name = "vendor"; description = "vendor for the platform"; merge = mergeOneOption; }; types.vendor = enum (attrValues vendors); vendors = setTypes types.openVendor { apple = {}; pc = {}; # Actually matters, unlocking some MinGW-w64-specific options in GCC. See # bottom of https://sourceforge.net/p/mingw-w64/wiki2/Unicode%20apps/ w64 = {}; none = {}; unknown = {}; }; ################################################################################ types.openExecFormat = mkOptionType { name = "exec-format"; description = "executable container used by the kernel"; merge = mergeOneOption; }; types.execFormat = enum (attrValues execFormats); execFormats = setTypes types.openExecFormat { aout = {}; # a.out elf = {}; macho = {}; pe = {}; wasm = {}; unknown = {}; }; ################################################################################ types.openKernelFamily = mkOptionType { name = "exec-format"; description = "executable container used by the kernel"; merge = mergeOneOption; }; types.kernelFamily = enum (attrValues kernelFamilies); kernelFamilies = setTypes types.openKernelFamily { bsd = {}; darwin = {}; }; ################################################################################ types.openKernel = mkOptionType { name = "kernel"; description = "kernel name and information"; merge = mergeOneOption; check = x: types.execFormat.check x.execFormat && all types.kernelFamily.check (attrValues x.families); }; types.kernel = enum (attrValues kernels); kernels = with execFormats; with kernelFamilies; setTypes types.openKernel { # TODO(@Ericson2314): Don't want to mass-rebuild yet to keeping 'darwin' as # the normalized name for macOS. macos = { execFormat = macho; families = { inherit darwin; }; name = "darwin"; }; ios = { execFormat = macho; families = { inherit darwin; }; }; freebsd = { execFormat = elf; families = { inherit bsd; }; }; linux = { execFormat = elf; families = { }; }; netbsd = { execFormat = elf; families = { inherit bsd; }; }; none = { execFormat = unknown; families = { }; }; openbsd = { execFormat = elf; families = { inherit bsd; }; }; solaris = { execFormat = elf; families = { }; }; wasi = { execFormat = wasm; families = { }; }; redox = { execFormat = elf; families = { }; }; windows = { execFormat = pe; families = { }; }; ghcjs = { execFormat = unknown; families = { }; }; genode = { execFormat = elf; families = { }; }; mmixware = { execFormat = unknown; families = { }; }; } // { # aliases # 'darwin' is the kernel for all of them. We choose macOS by default. darwin = kernels.macos; watchos = kernels.ios; tvos = kernels.ios; win32 = kernels.windows; }; ################################################################################ types.openAbi = mkOptionType { name = "abi"; description = "binary interface for compiled code and syscalls"; merge = mergeOneOption; }; types.abi = enum (attrValues abis); abis = setTypes types.openAbi { cygnus = {}; msvc = {}; # Note: eabi is specific to ARM and PowerPC. # On PowerPC, this corresponds to PPCEABI. # On ARM, this corresponds to ARMEABI. eabi = { float = "soft"; }; eabihf = { float = "hard"; }; # Other architectures should use ELF in embedded situations. elf = {}; androideabi = {}; android = { assertions = [ { assertion = platform: !platform.isAarch32; message = '' The "android" ABI is not for 32-bit ARM. Use "androideabi" instead. ''; } ]; }; gnueabi = { float = "soft"; }; gnueabihf = { float = "hard"; }; gnu = { assertions = [ { assertion = platform: !platform.isAarch32; message = '' The "gnu" ABI is ambiguous on 32-bit ARM. Use "gnueabi" or "gnueabihf" instead. ''; } ]; }; gnuabi64 = { abi = "64"; }; musleabi = { float = "soft"; }; musleabihf = { float = "hard"; }; musl = {}; uclibceabihf = { float = "soft"; }; uclibceabi = { float = "hard"; }; uclibc = {}; unknown = {}; }; ################################################################################ types.parsedPlatform = mkOptionType { name = "system"; description = "fully parsed representation of llvm- or nix-style platform tuple"; merge = mergeOneOption; check = { cpu, vendor, kernel, abi }: types.cpuType.check cpu && types.vendor.check vendor && types.kernel.check kernel && types.abi.check abi; }; isSystem = isType "system"; mkSystem = components: assert types.parsedPlatform.check components; setType "system" components; mkSkeletonFromList = l: { "1" = if elemAt l 0 == "avr" then { cpu = elemAt l 0; kernel = "none"; abi = "unknown"; } else throw "Target specification with 1 components is ambiguous"; "2" = # We only do 2-part hacks for things Nix already supports if elemAt l 1 == "cygwin" then { cpu = elemAt l 0; kernel = "windows"; abi = "cygnus"; } # MSVC ought to be the default ABI so this case isn't needed. But then it # becomes difficult to handle the gnu* variants for Aarch32 correctly for # minGW. So it's easier to make gnu* the default for the MinGW, but # hack-in MSVC for the non-MinGW case right here. else if elemAt l 1 == "windows" then { cpu = elemAt l 0; kernel = "windows"; abi = "msvc"; } else if (elemAt l 1) == "elf" then { cpu = elemAt l 0; vendor = "unknown"; kernel = "none"; abi = elemAt l 1; } else { cpu = elemAt l 0; kernel = elemAt l 1; }; "3" = # Awkward hacks, beware! if elemAt l 1 == "apple" then { cpu = elemAt l 0; vendor = "apple"; kernel = elemAt l 2; } else if (elemAt l 1 == "linux") || (elemAt l 2 == "gnu") then { cpu = elemAt l 0; kernel = elemAt l 1; abi = elemAt l 2; } else if (elemAt l 2 == "mingw32") # autotools breaks on -gnu for window then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = "windows"; } else if (elemAt l 2 == "wasi") then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = "wasi"; } else if (elemAt l 2 == "redox") then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = "redox"; } else if (elemAt l 2 == "mmixware") then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = "mmixware"; } else if hasPrefix "netbsd" (elemAt l 2) then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = elemAt l 2; } else if (elem (elemAt l 2) ["eabi" "eabihf" "elf"]) then { cpu = elemAt l 0; vendor = "unknown"; kernel = elemAt l 1; abi = elemAt l 2; } else if (elemAt l 2 == "ghcjs") then { cpu = elemAt l 0; vendor = "unknown"; kernel = elemAt l 2; } else if hasPrefix "genode" (elemAt l 2) then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = elemAt l 2; } else throw "Target specification with 3 components is ambiguous"; "4" = { cpu = elemAt l 0; vendor = elemAt l 1; kernel = elemAt l 2; abi = elemAt l 3; }; }.${toString (length l)} or (throw "system string has invalid number of hyphen-separated components"); # This should revert the job done by config.guess from the gcc compiler. mkSystemFromSkeleton = { cpu , # Optional, but fallback too complex for here. # Inferred below instead. vendor ? assert false; null , kernel , # Also inferred below abi ? assert false; null } @ args: let getCpu = name: cpuTypes.${name} or (throw "Unknown CPU type: ${name}"); getVendor = name: vendors.${name} or (throw "Unknown vendor: ${name}"); getKernel = name: kernels.${name} or (throw "Unknown kernel: ${name}"); getAbi = name: abis.${name} or (throw "Unknown ABI: ${name}"); parsed = { cpu = getCpu args.cpu; vendor = /**/ if args ? vendor then getVendor args.vendor else if isDarwin parsed then vendors.apple else if isWindows parsed then vendors.pc else vendors.unknown; kernel = if hasPrefix "darwin" args.kernel then getKernel "darwin" else if hasPrefix "netbsd" args.kernel then getKernel "netbsd" else getKernel args.kernel; abi = /**/ if args ? abi then getAbi args.abi else if isLinux parsed || isWindows parsed then if isAarch32 parsed then if lib.versionAtLeast (parsed.cpu.version or "0") "6" then abis.gnueabihf else abis.gnueabi else abis.gnu else abis.unknown; }; in mkSystem parsed; mkSystemFromString = s: mkSystemFromSkeleton (mkSkeletonFromList (lib.splitString "-" s)); doubleFromSystem = { cpu, kernel, abi, ... }: /**/ if abi == abis.cygnus then "${cpu.name}-cygwin" else if kernel.families ? darwin then "${cpu.name}-darwin" else "${cpu.name}-${kernel.name}"; tripleFromSystem = { cpu, vendor, kernel, abi, ... } @ sys: assert isSystem sys; let optExecFormat = lib.optionalString (kernel.name == "netbsd" && gnuNetBSDDefaultExecFormat cpu != kernel.execFormat) kernel.execFormat.name; optAbi = lib.optionalString (abi != abis.unknown) "-${abi.name}"; in "${cpu.name}-${vendor.name}-${kernel.name}${optExecFormat}${optAbi}"; ################################################################################ }