summary refs log tree commit diff
path: root/qcow/src/qcow.rs
blob: 2d49968e871fe6e47b2385b5dca28a6536c03779 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
// Copyright 2018 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

extern crate byteorder;
extern crate libc;

use byteorder::{BigEndian, ReadBytesExt, WriteBytesExt};
use libc::{EINVAL, ENOTSUP};

use std::cmp::min;
use std::fs::File;
use std::io::{self, Read, Seek, SeekFrom, Write};
use std::mem::size_of;
use std::os::unix::io::{AsRawFd, RawFd};

#[derive(Debug)]
pub enum Error {
    BackingFilesNotSupported,
    GettingFileSize(io::Error),
    GettingRefcount(io::Error),
    InvalidClusterSize,
    InvalidL1TableOffset,
    InvalidMagic,
    InvalidOffset(u64),
    InvalidRefcountTableOffset,
    NoRefcountClusters,
    OpeningFile(io::Error),
    ReadingHeader(io::Error),
    SeekingFile(io::Error),
    SettingRefcountRefcount(io::Error),
    SizeTooSmallForNumberOfClusters,
    WritingHeader(io::Error),
    UnsupportedRefcountOrder,
    UnsupportedVersion(u32),
}
pub type Result<T> = std::result::Result<T, Error>;

// QCOW magic constant that starts the header.
const QCOW_MAGIC: u32 = 0x5146_49fb;
// Default to a cluster size of 2^DEFAULT_CLUSTER_BITS
const DEFAULT_CLUSTER_BITS: u32 = 16;
const MAX_CLUSTER_BITS: u32 = 30;
// Only support 2 byte refcounts, 2^refcount_order bits.
const DEFAULT_REFCOUNT_ORDER: u32 = 4;

const V3_BARE_HEADER_SIZE: u32 = 104;

// bits 0-8 and 56-63 are reserved.
const L1_TABLE_OFFSET_MASK: u64 = 0x00ff_ffff_ffff_fe00;
const L2_TABLE_OFFSET_MASK: u64 = 0x00ff_ffff_ffff_fe00;
// Flags
const COMPRESSED_FLAG: u64 = 1 << 62;
const CLUSTER_USED_FLAG: u64 = 1 << 63;

/// Contains the information from the header of a qcow file.
#[derive(Debug)]
pub struct QcowHeader {
    pub magic: u32,
    pub version: u32,

    pub backing_file_offset: u64,
    pub backing_file_size: u32,

    pub cluster_bits: u32,
    pub size: u64,
    pub crypt_method: u32,

    pub l1_size: u32,
    pub l1_table_offset: u64,

    pub refcount_table_offset: u64,
    pub refcount_table_clusters: u32,

    pub nb_snapshots: u32,
    pub snapshots_offset: u64,

    // v3 entries
    pub incompatible_features: u64,
    pub compatible_features: u64,
    pub autoclear_features: u64,
    pub refcount_order: u32,
    pub header_size: u32,
}

impl QcowHeader {
    /// Creates a QcowHeader from a reference to a file.
    pub fn new(f: &mut File) -> Result<QcowHeader> {
        f.seek(SeekFrom::Start(0)).map_err(Error::ReadingHeader)?;
        let magic = f.read_u32::<BigEndian>().map_err(Error::ReadingHeader)?;
        if magic != QCOW_MAGIC {
            return Err(Error::InvalidMagic);
        }

        // Reads the next u32 from the file.
        fn read_u32_from_file(f: &mut File) -> Result<u32> {
            f.read_u32::<BigEndian>().map_err(Error::ReadingHeader)
        }

        // Reads the next u64 from the file.
        fn read_u64_from_file(f: &mut File) -> Result<u64> {
            f.read_u64::<BigEndian>().map_err(Error::ReadingHeader)
        }

        Ok(QcowHeader {
            magic,
            version: read_u32_from_file(f)?,
            backing_file_offset: read_u64_from_file(f)?,
            backing_file_size: read_u32_from_file(f)?,
            cluster_bits: read_u32_from_file(f)?,
            size: read_u64_from_file(f)?,
            crypt_method: read_u32_from_file(f)?,
            l1_size: read_u32_from_file(f)?,
            l1_table_offset: read_u64_from_file(f)?,
            refcount_table_offset: read_u64_from_file(f)?,
            refcount_table_clusters: read_u32_from_file(f)?,
            nb_snapshots: read_u32_from_file(f)?,
            snapshots_offset: read_u64_from_file(f)?,
            incompatible_features: read_u64_from_file(f)?,
            compatible_features: read_u64_from_file(f)?,
            autoclear_features: read_u64_from_file(f)?,
            refcount_order: read_u32_from_file(f)?,
            header_size: read_u32_from_file(f)?,
        })
    }

    /// Create a header for the given `size`.
    pub fn create_for_size(size: u64) -> QcowHeader {
        let cluster_bits: u32 = DEFAULT_CLUSTER_BITS;
        let cluster_size: u32 = 0x01 << cluster_bits;
        // L2 blocks are always one cluster long. They contain cluster_size/sizeof(u64) addresses.
        let l2_size: u32 = cluster_size / size_of::<u64>() as u32;
        let num_clusters: u32 = div_round_up_u64(size, u64::from(cluster_size)) as u32;
        let num_l2_clusters: u32 = div_round_up_u32(num_clusters, l2_size);
        let l1_clusters: u32 = div_round_up_u32(num_l2_clusters, cluster_size);
        QcowHeader {
            magic: QCOW_MAGIC,
            version: 3,
            backing_file_offset: 0,
            backing_file_size: 0,
            cluster_bits: DEFAULT_CLUSTER_BITS,
            size,
            crypt_method: 0,
            l1_size: num_l2_clusters,
            l1_table_offset: u64::from(cluster_size),
             // The refcount table is after l1 + header.
            refcount_table_offset: u64::from(cluster_size * (l1_clusters + 1)),
            refcount_table_clusters: {
                // Pre-allocate enough clusters for the entire refcount table as it must be
                // continuous in the file. Allocate enough space to refcount all clusters, including
                // the refcount clusters.
                let refcount_bytes = (0x01u32 << DEFAULT_REFCOUNT_ORDER) / 8;
                let for_data = div_round_up_u32(num_clusters * refcount_bytes, cluster_size);
                let for_refcounts = div_round_up_u32(for_data * refcount_bytes, cluster_size);
                let max_refcount_clusters = for_data + for_refcounts;
                // The refcount table needs to store the offset of each refcount cluster.
                div_round_up_u32(max_refcount_clusters * size_of::<u64>() as u32, cluster_size)
            },
            nb_snapshots: 0,
            snapshots_offset: 0,
            incompatible_features: 0,
            compatible_features: 0,
            autoclear_features: 0,
            refcount_order: DEFAULT_REFCOUNT_ORDER,
            header_size: V3_BARE_HEADER_SIZE,
       }
    }

    /// Write the header to `file`.
    pub fn write_to<F: Write + Seek>(&self, file: &mut F) -> Result<()> {
        // Writes the next u32 to the file.
        fn write_u32_to_file<F: Write>(f: &mut F, value: u32) -> Result<()> {
            f.write_u32::<BigEndian>(value).map_err(Error::WritingHeader)
        }

        // Writes the next u64 to the file.
        fn write_u64_to_file<F: Write>(f: &mut F, value: u64) -> Result<()> {
            f.write_u64::<BigEndian>(value).map_err(Error::WritingHeader)
        }

        write_u32_to_file(file, self.magic)?;
        write_u32_to_file(file, self.version)?;
        write_u64_to_file(file, self.backing_file_offset)?;
        write_u32_to_file(file, self.backing_file_size)?;
        write_u32_to_file(file, self.cluster_bits)?;
        write_u64_to_file(file, self.size)?;
        write_u32_to_file(file, self.crypt_method)?;
        write_u32_to_file(file, self.l1_size)?;
        write_u64_to_file(file, self.l1_table_offset)?;
        write_u64_to_file(file, self.refcount_table_offset)?;
        write_u32_to_file(file, self.refcount_table_clusters)?;
        write_u32_to_file(file, self.nb_snapshots)?;
        write_u64_to_file(file, self.snapshots_offset)?;
        write_u64_to_file(file, self.incompatible_features)?;
        write_u64_to_file(file, self.compatible_features)?;
        write_u64_to_file(file, self.autoclear_features)?;
        write_u32_to_file(file, self.refcount_order)?;
        write_u32_to_file(file, self.header_size)?;

        // Set the file length by seeking and writing a zero to the last byte. This avoids needing
        // a `File` instead of anything that implements seek as the `file` argument.
        // Zeros out the l1 and refcount table clusters.
        let cluster_size = 0x01u64 << self.cluster_bits;
        let refcount_blocks_size = u64::from(self.refcount_table_clusters) * cluster_size;
        file.seek(SeekFrom::Start(self.refcount_table_offset + refcount_blocks_size - 2))
            .map_err(Error::WritingHeader)?;
        file.write(&[0u8])
            .map_err(Error::WritingHeader)?;

        Ok(())
    }
}

/// Represents a qcow2 file. This is a sparse file format maintained by the qemu project.
/// Full documentation of the format can be found in the qemu repository.
///
/// # Example
///
/// ```
/// # use std::io::{Read, Seek, SeekFrom};
/// # use qcow::{self, QcowFile};
/// # fn test(file: std::fs::File) -> std::io::Result<()> {
///     let mut q = QcowFile::from(file).expect("Can't open qcow file");
///     let mut buf = [0u8; 12];
///     q.seek(SeekFrom::Start(10 as u64))?;
///     q.read(&mut buf[..])?;
/// #   Ok(())
/// # }
/// ```
#[derive(Debug)]
pub struct QcowFile {
    file: File,
    header: QcowHeader,
    l2_entries: u64,
    cluster_size: u64,
    cluster_mask: u64,
    current_offset: u64,
    refcount_bits: u64,
    //TODO(dgreid) Add support for backing files. - backing_file: Option<Box<QcowFile<T>>>,
}

impl QcowFile {
    /// Creates a QcowFile from `file`. File must be a valid qcow2 image.
    pub fn from(mut file: File) -> Result<QcowFile> {
        let header = QcowHeader::new(&mut file)?;

        // Only v3 files are supported.
        if header.version != 3 {
            return Err(Error::UnsupportedVersion(header.version));
        }

        let cluster_bits: u32 = header.cluster_bits;
        if cluster_bits > MAX_CLUSTER_BITS {
            return Err(Error::InvalidClusterSize);
        }
        let cluster_size = 0x01u64 << cluster_bits;
        if cluster_size < size_of::<u64>() as u64 {
            // Can't fit an offset in a cluster, nothing is going to work.
            return Err(Error::InvalidClusterSize);
        }

        // No current support for backing files.
        if header.backing_file_offset != 0 {
            return Err(Error::BackingFilesNotSupported);
        }

        // Only support two byte refcounts.
        let refcount_bits: u64 = 0x01u64
            .checked_shl(header.refcount_order)
            .ok_or(Error::UnsupportedRefcountOrder)?;
        if refcount_bits != 16 {
            return Err(Error::UnsupportedRefcountOrder);
        }

        // Need at least one refcount cluster
        if header.refcount_table_clusters == 0 {
            return Err(Error::NoRefcountClusters);
        }
        offset_is_cluster_boundary(header.backing_file_offset, header.cluster_bits)?;
        offset_is_cluster_boundary(header.l1_table_offset, header.cluster_bits)?;
        offset_is_cluster_boundary(header.refcount_table_offset, header.cluster_bits)?;
        offset_is_cluster_boundary(header.snapshots_offset, header.cluster_bits)?;

        let qcow = QcowFile {
            file,
            header,
            l2_entries: cluster_size / size_of::<u64>() as u64,
            cluster_size,
            cluster_mask: cluster_size - 1,
            current_offset: 0,
            refcount_bits,
        };

        // Check that the L1 and refcount tables fit in a 64bit address space.
        qcow.header.l1_table_offset
            .checked_add(qcow.l1_address_offset(qcow.virtual_size()))
            .ok_or(Error::InvalidL1TableOffset)?;
        qcow.header.refcount_table_offset
            .checked_add(u64::from(qcow.header.refcount_table_clusters) * qcow.cluster_size)
            .ok_or(Error::InvalidRefcountTableOffset)?;

        Ok(qcow)
    }

    /// Creates a new QcowFile at the given path.
    pub fn new(mut file: File, virtual_size: u64) -> Result<QcowFile> {
        let header = QcowHeader::create_for_size(virtual_size);
        file.seek(SeekFrom::Start(0)).map_err(Error::SeekingFile)?;
        header.write_to(&mut file)?;

        let mut qcow = Self::from(file)?;

        // Set the refcount for each refcount table cluster.
        let cluster_size = 0x01u64 << qcow.header.cluster_bits;
        let refcount_table_base = qcow.header.refcount_table_offset as u64;
        let end_cluster_addr = refcount_table_base +
            u64::from(qcow.header.refcount_table_clusters) * cluster_size;

        let mut cluster_addr = 0;
        while cluster_addr < end_cluster_addr {
            qcow.set_cluster_refcount(cluster_addr, 1).map_err(Error::SettingRefcountRefcount)?;
            cluster_addr += cluster_size;
        }

        Ok(qcow)
    }

    /// Returns the first cluster in the file with a 0 refcount. Used for testing.
    pub fn first_zero_refcount(&mut self) -> Result<Option<u64>> {
        let file_size = self.file.metadata().map_err(Error::GettingFileSize)?.len();
        let cluster_size = 0x01u64 << self.header.cluster_bits;

        let mut cluster_addr = 0;
        while cluster_addr < file_size {
            match self.get_cluster_refcount(cluster_addr).map_err(Error::GettingRefcount)? {
                0 => return Ok(Some(cluster_addr)),
                _ => (),
            }
            cluster_addr += cluster_size;
        }
        Ok(None)
    }

    // Limits the range so that it doesn't exceed the virtual size of the file.
    fn limit_range_file(&self, address: u64, count: usize) -> usize {
        if address.checked_add(count as u64).is_none() || address > self.virtual_size() {
            return 0;
        }
        min(count as u64, self.virtual_size() - address) as usize
    }

    // Limits the range so that it doesn't overflow the end of a cluster.
    fn limit_range_cluster(&self, address: u64, count: usize) -> usize {
        let offset: u64 = address & self.cluster_mask;
        let limit = self.cluster_size - offset;
        min(count as u64, limit) as usize
    }

    // Gets the maximum virtual size of this image.
    fn virtual_size(&self) -> u64 {
        self.header.size
    }

    // Gets the offset of `address` in the L1 table.
    fn l1_address_offset(&self, address: u64) -> u64 {
        let l1_index = (address / self.cluster_size) / self.l2_entries;
        l1_index * size_of::<u64>() as u64
    }

    // Gets the offset of `address` in the L2 table.
    fn l2_address_offset(&self, address: u64) -> u64 {
        let l2_index = (address / self.cluster_size) % self.l2_entries;
        l2_index * size_of::<u64>() as u64
    }

    // Returns the offset of address within a cluster.
    fn cluster_offset(&self, address: u64) -> u64 {
        address & self.cluster_mask
    }

    // Returns the file offset for the given `address`. If `address` doesn't
    // have a cluster allocated, the behavior is determined by the `allocate`
    // argument. If `allocate` is true, then allocate the cluster and return the
    // new offset, otherwise return None.  Returns an error if the address is
    // beyond the end or there is an issue accessing the file.
    fn file_offset(&mut self, address: u64, allocate: bool) -> std::io::Result<Option<u64>> {
        if address >= self.virtual_size() as u64 {
            return Err(std::io::Error::from_raw_os_error(EINVAL));
        }

        let l1_entry_offset: u64 = self.header.l1_table_offset + self.l1_address_offset(address);
        if l1_entry_offset >= self.file.metadata()?.len() {
            // L1 table is not allocated in image. No data has ever been written.
            if allocate {
                self.file.set_len(
                    self.header.l1_table_offset +
                        self.l1_address_offset(self.virtual_size()),
                )?;
            } else {
                return Ok(None);
            }
        }
        let l2_addr_disk = read_u64_from_offset(&mut self.file, l1_entry_offset)?;
        let l2_addr_from_table: u64 = l2_addr_disk & L1_TABLE_OFFSET_MASK;
        let l2_addr = if l2_addr_from_table == 0 {
            if allocate {
                self.append_data_cluster(l1_entry_offset)?
            } else {
                return Ok(None);
            }
        } else {
            l2_addr_from_table
        };
        let l2_entry_addr: u64 = l2_addr.checked_add(self.l2_address_offset(address))
                .ok_or_else(|| std::io::Error::from_raw_os_error(EINVAL))?;
        let cluster_addr_disk: u64 = read_u64_from_offset(&mut self.file, l2_entry_addr)?;
        if cluster_addr_disk & COMPRESSED_FLAG != 0 {
            return Err(std::io::Error::from_raw_os_error(ENOTSUP));
        }
        let cluster_addr_from_table: u64 = cluster_addr_disk & L2_TABLE_OFFSET_MASK;
        let cluster_addr = if cluster_addr_from_table == 0 {
            if allocate {
                self.append_data_cluster(l2_entry_addr)?
            } else {
                return Ok(None);
            }
        } else {
            cluster_addr_from_table
        };
        Ok(Some(cluster_addr + self.cluster_offset(address)))
    }

    // Allocate a new cluster at the end of the current file, return the address.
    fn append_new_cluster(&mut self) -> std::io::Result<u64> {
        // Determine where the new end of the file should be and set_len, which
        // translates to truncate(2).
        let file_end: u64 = self.file.seek(SeekFrom::End(0))?;
        let cluster_size: u64 = self.cluster_size;
        let new_cluster_address: u64 = (file_end + cluster_size - 1) & !self.cluster_mask;
        self.file.set_len(new_cluster_address + cluster_size)?;
        // Ensure the length is set before meta-data is updated.
        self.file.sync_all()?;

        Ok(new_cluster_address)
    }

    // Allocate and initialize a new data cluster. Returns the offset of the
    // cluster in to the file on success. Write the address to the offset in
    // `entry_addr` to fill in the L1 or L2 table.
    fn append_data_cluster(&mut self, entry_addr: u64) -> std::io::Result<u64> {
        let new_addr: u64 = self.append_new_cluster()?;
        // Save the new block to the table and mark it as used.
        write_u64_to_offset(&mut self.file, entry_addr, new_addr | CLUSTER_USED_FLAG)?;
        // Ensure that the metadata update is commited before writing data.
        self.file.sync_data()?;
        // The cluster refcount starts at one indicating it is used but doesn't need COW.
        self.set_cluster_refcount(new_addr, 1)?;
        // Ensure that the refcount is updated before starting to use the cluster.
        self.file.sync_data()?;
        Ok(new_addr)
    }

    // Gets the address of the refcount block and the index into the block for the given address.
    fn get_refcount_block(&self, address: u64) -> std::io::Result<(u64, u64)> {
        let cluster_size: u64 = self.cluster_size;
        let refcount_block_entries = cluster_size * size_of::<u64>() as u64 / self.refcount_bits;
        let block_index = (address / cluster_size) % refcount_block_entries;
        let refcount_table_index = (address / cluster_size) / refcount_block_entries;
        let refcount_block_entry_addr = self.header.refcount_table_offset
                .checked_add(refcount_table_index * size_of::<u64>() as u64)
                .ok_or_else(|| std::io::Error::from_raw_os_error(EINVAL))?;
        Ok((refcount_block_entry_addr, block_index))
    }

    // Set the refcount for a cluster with the given address.
    fn set_cluster_refcount(&mut self, address: u64, refcount: u16) -> std::io::Result<()> {
        let (entry_addr, block_index) = self.get_refcount_block(address)?;
        let stored_addr = read_u64_from_offset(&mut self.file, entry_addr)?;
        let refcount_block_address = if stored_addr == 0 {
            let new_addr = self.append_new_cluster()?;
            write_u64_to_offset(&mut self.file, entry_addr, new_addr)?;
            self.set_cluster_refcount(new_addr, 1)?;
            new_addr
        } else {
            stored_addr
        };
        let refcount_address: u64 = refcount_block_address
                .checked_add(block_index * 2)
                .ok_or_else(|| std::io::Error::from_raw_os_error(EINVAL))?;
        self.file.seek(SeekFrom::Start(refcount_address))?;
        self.file.write_u16::<BigEndian>(refcount)
    }

    // Gets the refcount for a cluster with the given address.
    fn get_cluster_refcount(&mut self, address: u64) -> std::io::Result<u16> {
        let (entry_addr, block_index) = self.get_refcount_block(address)?;
        let stored_addr = read_u64_from_offset(&mut self.file, entry_addr)?;
        let refcount_block_address = if stored_addr == 0 {
            return Ok(0);
        } else {
            stored_addr
        };
        let refcount_address: u64 = refcount_block_address
                .checked_add(block_index * 2)
                .ok_or_else(|| std::io::Error::from_raw_os_error(EINVAL))?;
        self.file.seek(SeekFrom::Start(refcount_address))?;
        self.file.read_u16::<BigEndian>()
    }
}

impl AsRawFd for QcowFile {
    fn as_raw_fd(&self) -> RawFd {
        self.file.as_raw_fd()
    }
}

impl Read for QcowFile {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        let address: u64 = self.current_offset as u64;
        let read_count: usize = self.limit_range_file(address, buf.len());

        let mut nread: usize = 0;
        while nread < read_count {
            let curr_addr = address + nread as u64;
            let file_offset = self.file_offset(curr_addr, false)?;
            let count = self.limit_range_cluster(curr_addr, read_count - nread);

            if let Some(offset) = file_offset {
                self.file.seek(SeekFrom::Start(offset))?;
                self.file.read_exact(&mut buf[nread..(nread + count)])?;
            } else {
                // Previously unwritten region, return zeros
                for b in (&mut buf[nread..(nread + count)]).iter_mut() {
                    *b = 0;
                }
            }

            nread += count;
        }
        self.current_offset += read_count as u64;
        Ok(read_count)
    }
}

impl Seek for QcowFile {
    fn seek(&mut self, pos: SeekFrom) -> std::io::Result<u64> {
        let new_offset: Option<u64> = match pos {
            SeekFrom::Start(off) => Some(off),
            SeekFrom::End(off) => {
                if off < 0 {
                    0i64.checked_sub(off).and_then(|increment| {
                        self.virtual_size().checked_sub(increment as u64)
                    })
                } else {
                    self.virtual_size().checked_add(off as u64)
                }
            }
            SeekFrom::Current(off) => {
                if off < 0 {
                    0i64.checked_sub(off).and_then(|increment| {
                        self.current_offset.checked_sub(increment as u64)
                    })
                } else {
                    self.current_offset.checked_add(off as u64)
                }
            }
        };

        if let Some(o) = new_offset {
            if o <= self.virtual_size() {
                self.current_offset = o;
                return Ok(o);
            }
        }
        Err(std::io::Error::from_raw_os_error(EINVAL))
    }
}

impl Write for QcowFile {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        let address: u64 = self.current_offset as u64;
        let write_count: usize = self.limit_range_file(address, buf.len());

        let mut nwritten: usize = 0;
        while nwritten < write_count {
            let curr_addr = address + nwritten as u64;
            // file_offset always returns an address when allocate == true.
            let offset = self.file_offset(curr_addr, true)?.unwrap();
            let count = self.limit_range_cluster(curr_addr, write_count - nwritten);

            if let Err(e) = self.file.seek(SeekFrom::Start(offset)) {
                return Err(e);
            }
            if let Err(e) = self.file.write(&buf[nwritten..(nwritten + count)]) {
                return Err(e);
            }

            nwritten += count;
        }
        self.current_offset += write_count as u64;
        Ok(write_count)
    }

    fn flush(&mut self) -> std::io::Result<()> {
        self.file.sync_all()
    }
}

// Returns an Error if the given offset doesn't align to a cluster boundary.
fn offset_is_cluster_boundary(offset: u64, cluster_bits: u32) -> Result<()> {
    if offset & ((0x01 << cluster_bits) - 1) != 0 {
        return Err(Error::InvalidOffset(offset));
    }
    Ok(())
}

// Reads a big endian 64 bit number from `offset`.
fn read_u64_from_offset(f: &mut File, offset: u64) -> std::io::Result<u64> {
    f.seek(SeekFrom::Start(offset))?;
    f.read_u64::<BigEndian>()
}

// Writes a big endian 64 bit number to `offset`.
fn write_u64_to_offset(f: &mut File, offset: u64, value: u64) -> std::io::Result<()> {
    f.seek(SeekFrom::Start(offset))?;
    f.write_u64::<BigEndian>(value)
}

// Ceiling of the division of `dividend`/`divisor`.
fn div_round_up_u64(dividend: u64, divisor: u64) -> u64 {
    (dividend + divisor - 1) / divisor
}

// Ceiling of the division of `dividend`/`divisor`.
fn div_round_up_u32(dividend: u32, divisor: u32) -> u32 {
    (dividend + divisor - 1) / divisor
}

#[cfg(test)]
extern crate sys_util;

#[cfg(test)]
mod tests {
    use std::fs::File;
    use std::io::{Read, Seek, SeekFrom, Write};
    use super::*;
    use sys_util::SharedMemory;

    fn valid_header() -> Vec<u8> {
        vec![
            0x51u8, 0x46, 0x49, 0xfb, // magic
            0x00, 0x00, 0x00, 0x03, // version
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // backing file offset
            0x00, 0x00, 0x00, 0x00, // backing file size
            0x00, 0x00, 0x00, 0x0c, // cluster_bits
            0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, // size
            0x00, 0x00, 0x00, 0x00, // crypt method
            0x00, 0x00, 0x00, 0x00, // L1 size
            0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, // L1 table offset
            0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, // refcount table offset
            0x00, 0x00, 0x00, 0x01, // refcount table clusters
            0x00, 0x00, 0x00, 0x00, // nb snapshots
            0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, // snapshots offset
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // incompatible_features
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // compatible_features
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // autoclear_features
            0x00, 0x00, 0x00, 0x04, // refcount_order
            0x00, 0x00, 0x00, 0x68, // header_length
        ]
    }

    fn with_basic_file<F>(header: &[u8], mut testfn: F)
    where
        F: FnMut(File),
    {
        let shm = SharedMemory::new(None).unwrap();
        let mut disk_file: File = shm.into();
        disk_file.write_all(&header).unwrap();
        disk_file.seek(SeekFrom::Start(0)).unwrap();

        testfn(disk_file); // File closed when the function exits.
    }

    fn with_default_file<F>(file_size: u64, mut testfn: F)
    where
        F: FnMut(QcowFile),
    {
        let shm = SharedMemory::new(None).unwrap();
        let qcow_file = QcowFile::new(shm.into(), file_size).unwrap();

        testfn(qcow_file); // File closed when the function exits.
    }

    #[test]
    fn default_header() {
        let header = QcowHeader::create_for_size(0x10_0000);
        let shm = SharedMemory::new(None).unwrap();
        let mut disk_file: File = shm.into();
        header.write_to(&mut disk_file).expect("Failed to write header to shm.");
        disk_file.seek(SeekFrom::Start(0)).unwrap();
        QcowFile::from(disk_file).expect("Failed to create Qcow from default Header");
    }

    #[test]
    fn header_read() {
        with_basic_file(&valid_header(), |mut disk_file: File| {
            QcowHeader::new(&mut disk_file).expect("Failed to create Header.");
        });
    }

    #[test]
    fn invalid_magic() {
        let invalid_header = vec![0x51u8, 0x46, 0x49, 0xfb];
        with_basic_file(&invalid_header, |mut disk_file: File| {
            QcowHeader::new(&mut disk_file).expect_err("Invalid header worked.");
        });
    }

    #[test]
    fn invalid_refcount_order() {
        let mut header = valid_header();
        header[99] = 2;
        with_basic_file(&header, |disk_file: File| {
            QcowFile::from(disk_file).expect_err("Invalid refcount order worked.");
        });
    }

    #[test]
    fn write_read_start() {
        with_basic_file(&valid_header(), |disk_file: File| {
            let mut q = QcowFile::from(disk_file).unwrap();
            q.write(b"test first bytes").expect(
                "Failed to write test string.",
            );
            let mut buf = [0u8; 4];
            q.seek(SeekFrom::Start(0)).expect("Failed to seek.");
            q.read(&mut buf).expect("Failed to read.");
            assert_eq!(&buf, b"test");
        });
    }

    #[test]
    fn offset_write_read() {
        with_basic_file(&valid_header(), |disk_file: File| {
            let mut q = QcowFile::from(disk_file).unwrap();
            let b = [0x55u8; 0x1000];
            q.seek(SeekFrom::Start(0xfff2000)).expect("Failed to seek.");
            q.write(&b).expect("Failed to write test string.");
            let mut buf = [0u8; 4];
            q.seek(SeekFrom::Start(0xfff2000)).expect("Failed to seek.");
            q.read(&mut buf).expect("Failed to read.");
            assert_eq!(buf[0], 0x55);
        });
    }

    #[test]
    fn test_header() {
        with_basic_file(&valid_header(), |disk_file: File| {
            let q = QcowFile::from(disk_file).unwrap();
            assert_eq!(q.virtual_size(), 0x20_0000_0000);
        });
    }

    #[test]
    fn read_small_buffer() {
        with_basic_file(&valid_header(), |disk_file: File| {
            let mut q = QcowFile::from(disk_file).unwrap();
            let mut b = [5u8; 16];
            q.seek(SeekFrom::Start(1000)).expect("Failed to seek.");
            q.read(&mut b).expect("Failed to read.");
            assert_eq!(0, b[0]);
            assert_eq!(0, b[15]);
        });
    }

    #[test]
    fn replay_ext4() {
        with_basic_file(&valid_header(), |disk_file: File| {
            let mut q = QcowFile::from(disk_file).unwrap();
            const BUF_SIZE: usize = 0x1000;
            let mut b = [0u8; BUF_SIZE];

            struct Transfer {
                pub write: bool,
                pub addr: u64,
            };

            // Write transactions from mkfs.ext4.
            let xfers: Vec<Transfer> = vec![
                Transfer {write: false, addr: 0xfff0000},
                Transfer {write: false, addr: 0xfffe000},
                Transfer {write: false, addr: 0x0},
                Transfer {write: false, addr: 0x1000},
                Transfer {write: false, addr: 0xffff000},
                Transfer {write: false, addr: 0xffdf000},
                Transfer {write: false, addr: 0xfff8000},
                Transfer {write: false, addr: 0xffe0000},
                Transfer {write: false, addr: 0xffce000},
                Transfer {write: false, addr: 0xffb6000},
                Transfer {write: false, addr: 0xffab000},
                Transfer {write: false, addr: 0xffa4000},
                Transfer {write: false, addr: 0xff8e000},
                Transfer {write: false, addr: 0xff86000},
                Transfer {write: false, addr: 0xff84000},
                Transfer {write: false, addr: 0xff89000},
                Transfer {write: false, addr: 0xfe7e000},
                Transfer {write: false, addr: 0x100000},
                Transfer {write: false, addr: 0x3000},
                Transfer {write: false, addr: 0x7000},
                Transfer {write: false, addr: 0xf000},
                Transfer {write: false, addr: 0x2000},
                Transfer {write: false, addr: 0x4000},
                Transfer {write: false, addr: 0x5000},
                Transfer {write: false, addr: 0x6000},
                Transfer {write: false, addr: 0x8000},
                Transfer {write: false, addr: 0x9000},
                Transfer {write: false, addr: 0xa000},
                Transfer {write: false, addr: 0xb000},
                Transfer {write: false, addr: 0xc000},
                Transfer {write: false, addr: 0xd000},
                Transfer {write: false, addr: 0xe000},
                Transfer {write: false, addr: 0x10000},
                Transfer {write: false, addr: 0x11000},
                Transfer {write: false, addr: 0x12000},
                Transfer {write: false, addr: 0x13000},
                Transfer {write: false, addr: 0x14000},
                Transfer {write: false, addr: 0x15000},
                Transfer {write: false, addr: 0x16000},
                Transfer {write: false, addr: 0x17000},
                Transfer {write: false, addr: 0x18000},
                Transfer {write: false, addr: 0x19000},
                Transfer {write: false, addr: 0x1a000},
                Transfer {write: false, addr: 0x1b000},
                Transfer {write: false, addr: 0x1c000},
                Transfer {write: false, addr: 0x1d000},
                Transfer {write: false, addr: 0x1e000},
                Transfer {write: false, addr: 0x1f000},
                Transfer {write: false, addr: 0x21000},
                Transfer {write: false, addr: 0x22000},
                Transfer {write: false, addr: 0x24000},
                Transfer {write: false, addr: 0x40000},
                Transfer {write: false, addr: 0x0},
                Transfer {write: false, addr: 0x3000},
                Transfer {write: false, addr: 0x7000},
                Transfer {write: false, addr: 0x0},
                Transfer {write: false, addr: 0x1000},
                Transfer {write: false, addr: 0x2000},
                Transfer {write: false, addr: 0x3000},
                Transfer {write: false, addr: 0x0},
                Transfer {write: false, addr: 0x449000},
                Transfer {write: false, addr: 0x48000},
                Transfer {write: false, addr: 0x48000},
                Transfer {write: false, addr: 0x448000},
                Transfer {write: false, addr: 0x44a000},
                Transfer {write: false, addr: 0x48000},
                Transfer {write: false, addr: 0x48000},
                Transfer {write: true, addr: 0x0},
                Transfer {write: true, addr: 0x448000},
                Transfer {write: true, addr: 0x449000},
                Transfer {write: true, addr: 0x44a000},
                Transfer {write: true, addr: 0xfff0000},
                Transfer {write: true, addr: 0xfff1000},
                Transfer {write: true, addr: 0xfff2000},
                Transfer {write: true, addr: 0xfff3000},
                Transfer {write: true, addr: 0xfff4000},
                Transfer {write: true, addr: 0xfff5000},
                Transfer {write: true, addr: 0xfff6000},
                Transfer {write: true, addr: 0xfff7000},
                Transfer {write: true, addr: 0xfff8000},
                Transfer {write: true, addr: 0xfff9000},
                Transfer {write: true, addr: 0xfffa000},
                Transfer {write: true, addr: 0xfffb000},
                Transfer {write: true, addr: 0xfffc000},
                Transfer {write: true, addr: 0xfffd000},
                Transfer {write: true, addr: 0xfffe000},
                Transfer {write: true, addr: 0xffff000},
            ];

            for xfer in xfers.iter() {
                q.seek(SeekFrom::Start(xfer.addr)).expect("Failed to seek.");
                if xfer.write {
                    q.write(&b).expect("Failed to write.");
                } else {
                    let read_count: usize = q.read(&mut b).expect("Failed to read.");
                    assert_eq!(read_count, BUF_SIZE);
                }
            }
        });
    }

    #[test]
    fn combo_write_read() {
        with_default_file(1024 * 1024 * 1024 * 256, |mut qcow_file| {
            const NUM_BLOCKS: usize = 555;
            const BLOCK_SIZE: usize = 0x1_0000;
            const OFFSET: usize = 0x1_0000_0020;
            let data = [0x55u8; BLOCK_SIZE];
            let mut readback = [0u8; BLOCK_SIZE];
            for i in 0..NUM_BLOCKS {
                let seek_offset = OFFSET + i * BLOCK_SIZE;
                qcow_file.seek(SeekFrom::Start(seek_offset as u64)).expect("Failed to seek.");
                let nwritten = qcow_file.write(&data).expect("Failed to write test data.");
                assert_eq!(nwritten, BLOCK_SIZE);
                // Read back the data to check it was written correctly.
                qcow_file.seek(SeekFrom::Start(seek_offset as u64)).expect("Failed to seek.");
                let nread = qcow_file.read(&mut readback).expect("Failed to read.");
                assert_eq!(nread, BLOCK_SIZE);
                for (orig, read) in data.iter().zip(readback.iter()) {
                    assert_eq!(orig, read);
                }
            }
            // Check that address 0 is still zeros.
            qcow_file.seek(SeekFrom::Start(0)).expect("Failed to seek.");
            let nread = qcow_file.read(&mut readback).expect("Failed to read.");
            assert_eq!(nread, BLOCK_SIZE);
            for read in readback.iter() {
                assert_eq!(*read, 0);
            }
            // Check the data again after the writes have happened.
            for i in 0..NUM_BLOCKS {
                let seek_offset = OFFSET + i * BLOCK_SIZE;
                qcow_file.seek(SeekFrom::Start(seek_offset as u64)).expect("Failed to seek.");
                let nread = qcow_file.read(&mut readback).expect("Failed to read.");
                assert_eq!(nread, BLOCK_SIZE);
                for (orig, read) in data.iter().zip(readback.iter()) {
                    assert_eq!(orig, read);
                }
            }

            assert_eq!(qcow_file.first_zero_refcount().unwrap(), None);
        });
    }
}