summary refs log tree commit diff
path: root/hypervisor/src/kvm/mod.rs
blob: c738cfad88e91ad25b98b50be1f048fccdf5c4e9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
// Copyright 2020 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
mod aarch64;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod x86_64;

use std::cmp::Ordering;
use std::collections::{BTreeMap, BinaryHeap};
use std::convert::TryFrom;
use std::ops::{Deref, DerefMut};
use std::os::raw::{c_char, c_ulong};
use std::os::unix::io::{AsRawFd, RawFd};
use std::sync::Arc;

use libc::{open, EFAULT, EINVAL, EIO, ENOENT, ENOSPC, EOVERFLOW, O_CLOEXEC, O_RDWR};

use kvm_sys::*;
use sync::Mutex;
use sys_util::{
    errno_result, ioctl, ioctl_with_ref, ioctl_with_val, AsRawDescriptor, Error, FromRawDescriptor,
    GuestAddress, GuestMemory, MappedRegion, MmapError, RawDescriptor, Result, SafeDescriptor,
};

use crate::{ClockState, Hypervisor, HypervisorCap, RunnableVcpu, Vcpu, VcpuExit, Vm};

// Wrapper around KVM_SET_USER_MEMORY_REGION ioctl, which creates, modifies, or deletes a mapping
// from guest physical to host user pages.
//
// Safe when the guest regions are guaranteed not to overlap.
unsafe fn set_user_memory_region(
    descriptor: &SafeDescriptor,
    slot: u32,
    read_only: bool,
    log_dirty_pages: bool,
    guest_addr: u64,
    memory_size: u64,
    userspace_addr: *mut u8,
) -> Result<()> {
    let mut flags = if read_only { KVM_MEM_READONLY } else { 0 };
    if log_dirty_pages {
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
    }
    let region = kvm_userspace_memory_region {
        slot,
        flags,
        guest_phys_addr: guest_addr,
        memory_size,
        userspace_addr: userspace_addr as u64,
    };

    let ret = ioctl_with_ref(descriptor, KVM_SET_USER_MEMORY_REGION(), &region);
    if ret == 0 {
        Ok(())
    } else {
        errno_result()
    }
}

pub struct Kvm {
    kvm: SafeDescriptor,
}

type KvmCap = kvm::Cap;

impl Kvm {
    /// Opens `/dev/kvm/` and returns a Kvm object on success.
    pub fn new() -> Result<Kvm> {
        // Open calls are safe because we give a constant nul-terminated string and verify the
        // result.
        let ret = unsafe { open("/dev/kvm\0".as_ptr() as *const c_char, O_RDWR | O_CLOEXEC) };
        if ret < 0 {
            return errno_result();
        }
        // Safe because we verify that ret is valid and we own the fd.
        Ok(Kvm {
            kvm: unsafe { SafeDescriptor::from_raw_descriptor(ret) },
        })
    }
}

impl AsRawDescriptor for Kvm {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.kvm.as_raw_descriptor()
    }
}

impl AsRawFd for Kvm {
    fn as_raw_fd(&self) -> RawFd {
        self.kvm.as_raw_descriptor()
    }
}

impl Hypervisor for Kvm {
    fn check_capability(&self, cap: &HypervisorCap) -> bool {
        if let Ok(kvm_cap) = KvmCap::try_from(cap) {
            // this ioctl is safe because we know this kvm descriptor is valid,
            // and we are copying over the kvm capability (u32) as a c_ulong value.
            unsafe { ioctl_with_val(self, KVM_CHECK_EXTENSION(), kvm_cap as c_ulong) == 1 }
        } else {
            // this capability cannot be converted on this platform, so return false
            false
        }
    }
}

// Used to invert the order when stored in a max-heap.
#[derive(Copy, Clone, Eq, PartialEq)]
struct MemSlot(u32);

impl Ord for MemSlot {
    fn cmp(&self, other: &MemSlot) -> Ordering {
        // Notice the order is inverted so the lowest magnitude slot has the highest priority in a
        // max-heap.
        other.0.cmp(&self.0)
    }
}

impl PartialOrd for MemSlot {
    fn partial_cmp(&self, other: &MemSlot) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

/// A wrapper around creating and using a KVM VM.
pub struct KvmVm {
    vm: SafeDescriptor,
    guest_mem: GuestMemory,
    mem_regions: Arc<Mutex<BTreeMap<u32, Box<dyn MappedRegion>>>>,
    mem_slot_gaps: Arc<Mutex<BinaryHeap<MemSlot>>>,
}

impl KvmVm {
    /// Constructs a new `KvmVm` using the given `Kvm` instance.
    pub fn new(kvm: &Kvm, guest_mem: GuestMemory) -> Result<KvmVm> {
        // Safe because we know kvm is a real kvm fd as this module is the only one that can make
        // Kvm objects.
        let ret = unsafe { ioctl(kvm, KVM_CREATE_VM()) };
        if ret < 0 {
            return errno_result();
        }
        // Safe because we verify that ret is valid and we own the fd.
        let vm_descriptor = unsafe { SafeDescriptor::from_raw_descriptor(ret) };
        guest_mem.with_regions(|index, guest_addr, size, host_addr, _| {
            unsafe {
                // Safe because the guest regions are guaranteed not to overlap.
                set_user_memory_region(
                    &vm_descriptor,
                    index as u32,
                    false,
                    false,
                    guest_addr.offset(),
                    size as u64,
                    host_addr as *mut u8,
                )
            }
        })?;
        // TODO(colindr/srichman): add default IRQ routes in IrqChip constructor or configure_vm
        Ok(KvmVm {
            vm: vm_descriptor,
            guest_mem,
            mem_regions: Arc::new(Mutex::new(BTreeMap::new())),
            mem_slot_gaps: Arc::new(Mutex::new(BinaryHeap::new())),
        })
    }

    fn create_kvm_vcpu(&self, _id: usize) -> Result<KvmVcpu> {
        Ok(KvmVcpu {})
    }

    /// Crates an in kernel interrupt controller.
    ///
    /// See the documentation on the KVM_CREATE_IRQCHIP ioctl.
    pub fn create_irq_chip(&self) -> Result<()> {
        // Safe because we know that our file is a VM fd and we verify the return result.
        let ret = unsafe { ioctl(self, KVM_CREATE_IRQCHIP()) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }
    /// Sets the level on the given irq to 1 if `active` is true, and 0 otherwise.
    pub fn set_irq_line(&self, irq: u32, active: bool) -> Result<()> {
        let mut irq_level = kvm_irq_level::default();
        irq_level.__bindgen_anon_1.irq = irq;
        irq_level.level = if active { 1 } else { 0 };

        // Safe because we know that our file is a VM fd, we know the kernel will only read the
        // correct amount of memory from our pointer, and we verify the return result.
        let ret = unsafe { ioctl_with_ref(self, KVM_IRQ_LINE(), &irq_level) };
        if ret == 0 {
            Ok(())
        } else {
            errno_result()
        }
    }
}

impl Vm for KvmVm {
    fn try_clone(&self) -> Result<Self> {
        Ok(KvmVm {
            vm: self.vm.try_clone()?,
            guest_mem: self.guest_mem.clone(),
            mem_regions: self.mem_regions.clone(),
            mem_slot_gaps: self.mem_slot_gaps.clone(),
        })
    }

    fn get_memory(&self) -> &GuestMemory {
        &self.guest_mem
    }

    fn add_memory_region(
        &mut self,
        guest_addr: GuestAddress,
        mem: Box<dyn MappedRegion>,
        read_only: bool,
        log_dirty_pages: bool,
    ) -> Result<u32> {
        let size = mem.size() as u64;
        let end_addr = guest_addr.checked_add(size).ok_or(Error::new(EOVERFLOW))?;
        if self.guest_mem.range_overlap(guest_addr, end_addr) {
            return Err(Error::new(ENOSPC));
        }
        let mut regions = self.mem_regions.lock();
        let mut gaps = self.mem_slot_gaps.lock();
        let slot = match gaps.pop() {
            Some(gap) => gap.0,
            None => (regions.len() + self.guest_mem.num_regions() as usize) as u32,
        };

        // Safe because we check that the given guest address is valid and has no overlaps. We also
        // know that the pointer and size are correct because the MemoryMapping interface ensures
        // this. We take ownership of the memory mapping so that it won't be unmapped until the slot
        // is removed.
        let res = unsafe {
            set_user_memory_region(
                &self.vm,
                slot,
                read_only,
                log_dirty_pages,
                guest_addr.offset() as u64,
                size,
                mem.as_ptr(),
            )
        };

        if let Err(e) = res {
            gaps.push(MemSlot(slot));
            return Err(e);
        }
        regions.insert(slot, mem);
        Ok(slot)
    }

    fn msync_memory_region(&mut self, slot: u32, offset: usize, size: usize) -> Result<()> {
        let mut regions = self.mem_regions.lock();
        let mem = regions.get_mut(&slot).ok_or(Error::new(ENOENT))?;

        mem.msync(offset, size).map_err(|err| match err {
            MmapError::InvalidAddress => Error::new(EFAULT),
            MmapError::NotPageAligned => Error::new(EINVAL),
            MmapError::SystemCallFailed(e) => e,
            _ => Error::new(EIO),
        })
    }

    fn remove_memory_region(&mut self, slot: u32) -> Result<()> {
        let mut regions = self.mem_regions.lock();
        if !regions.contains_key(&slot) {
            return Err(Error::new(ENOENT));
        }
        // Safe because the slot is checked against the list of memory slots.
        unsafe {
            set_user_memory_region(&self.vm, slot, false, false, 0, 0, std::ptr::null_mut())?;
        }
        self.mem_slot_gaps.lock().push(MemSlot(slot));
        regions.remove(&slot);
        Ok(())
    }

    fn get_pvclock(&self) -> Result<ClockState> {
        self.get_pvclock_arch()
    }

    fn set_pvclock(&self, state: &ClockState) -> Result<()> {
        self.set_pvclock_arch(state)
    }
}

impl AsRawDescriptor for KvmVm {
    fn as_raw_descriptor(&self) -> RawDescriptor {
        self.vm.as_raw_descriptor()
    }
}

impl AsRawFd for KvmVm {
    fn as_raw_fd(&self) -> RawFd {
        self.vm.as_raw_descriptor()
    }
}

/// A wrapper around creating and using a KVM Vcpu.
pub struct KvmVcpu {}

impl Vcpu for KvmVcpu {
    type Runnable = RunnableKvmVcpu;

    fn to_runnable(self) -> Result<Self::Runnable> {
        Ok(RunnableKvmVcpu {
            vcpu: self,
            phantom: Default::default(),
        })
    }

    fn request_interrupt_window(&self) -> Result<()> {
        Ok(())
    }
}

/// A KvmVcpu that has a thread and can be run.
pub struct RunnableKvmVcpu {
    vcpu: KvmVcpu,

    // vcpus must stay on the same thread once they start.
    // Add the PhantomData pointer to ensure RunnableKvmVcpu is not `Send`.
    phantom: std::marker::PhantomData<*mut u8>,
}

impl RunnableVcpu for RunnableKvmVcpu {
    type Vcpu = KvmVcpu;

    fn run(&self) -> Result<VcpuExit> {
        Ok(VcpuExit::Unknown)
    }
}

impl Deref for RunnableKvmVcpu {
    type Target = <Self as RunnableVcpu>::Vcpu;

    fn deref(&self) -> &Self::Target {
        &self.vcpu
    }
}

impl DerefMut for RunnableKvmVcpu {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.vcpu
    }
}

impl<'a> TryFrom<&'a HypervisorCap> for KvmCap {
    type Error = Error;

    fn try_from(cap: &'a HypervisorCap) -> Result<KvmCap> {
        match cap {
            HypervisorCap::ArmPmuV3 => Ok(KvmCap::ArmPmuV3),
            HypervisorCap::ImmediateExit => Ok(KvmCap::ImmediateExit),
            HypervisorCap::S390UserSigp => Ok(KvmCap::S390UserSigp),
            HypervisorCap::TscDeadlineTimer => Ok(KvmCap::TscDeadlineTimer),
            HypervisorCap::UserMemory => Ok(KvmCap::UserMemory),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::thread;
    use sys_util::{GuestAddress, MemoryMapping, MemoryMappingArena};

    #[test]
    fn new() {
        Kvm::new().unwrap();
    }

    #[test]
    fn check_capability() {
        let kvm = Kvm::new().unwrap();
        assert!(kvm.check_capability(&HypervisorCap::UserMemory));
        assert!(!kvm.check_capability(&HypervisorCap::S390UserSigp));
    }

    #[test]
    fn create_vm() {
        let kvm = Kvm::new().unwrap();
        let gm = GuestMemory::new(&[(GuestAddress(0), 0x1000)]).unwrap();
        KvmVm::new(&kvm, gm).unwrap();
    }

    #[test]
    fn clone_vm() {
        let kvm = Kvm::new().unwrap();
        let gm = GuestMemory::new(&[(GuestAddress(0), 0x1000)]).unwrap();
        let vm = KvmVm::new(&kvm, gm).unwrap();
        vm.try_clone().unwrap();
    }

    #[test]
    fn send_vm() {
        let kvm = Kvm::new().unwrap();
        let gm = GuestMemory::new(&[(GuestAddress(0), 0x1000)]).unwrap();
        let vm = KvmVm::new(&kvm, gm).unwrap();
        thread::spawn(move || {
            let _vm = vm;
        })
        .join()
        .unwrap();
    }

    #[test]
    fn get_memory() {
        let kvm = Kvm::new().unwrap();
        let gm = GuestMemory::new(&[(GuestAddress(0), 0x1000)]).unwrap();
        let vm = KvmVm::new(&kvm, gm).unwrap();
        let obj_addr = GuestAddress(0xf0);
        vm.get_memory().write_obj_at_addr(67u8, obj_addr).unwrap();
        let read_val: u8 = vm.get_memory().read_obj_from_addr(obj_addr).unwrap();
        assert_eq!(read_val, 67u8);
    }

    #[test]
    fn add_memory() {
        let kvm = Kvm::new().unwrap();
        let gm =
            GuestMemory::new(&[(GuestAddress(0), 0x1000), (GuestAddress(0x5000), 0x5000)]).unwrap();
        let mut vm = KvmVm::new(&kvm, gm).unwrap();
        let mem_size = 0x1000;
        let mem = MemoryMapping::new(mem_size).unwrap();
        vm.add_memory_region(GuestAddress(0x1000), Box::new(mem), false, false)
            .unwrap();
        let mem = MemoryMapping::new(mem_size).unwrap();
        vm.add_memory_region(GuestAddress(0x10000), Box::new(mem), false, false)
            .unwrap();
    }

    #[test]
    fn add_memory_ro() {
        let kvm = Kvm::new().unwrap();
        let gm = GuestMemory::new(&[(GuestAddress(0), 0x1000)]).unwrap();
        let mut vm = KvmVm::new(&kvm, gm).unwrap();
        let mem_size = 0x1000;
        let mem = MemoryMapping::new(mem_size).unwrap();
        vm.add_memory_region(GuestAddress(0x1000), Box::new(mem), true, false)
            .unwrap();
    }

    #[test]
    fn remove_memory() {
        let kvm = Kvm::new().unwrap();
        let gm = GuestMemory::new(&[(GuestAddress(0), 0x1000)]).unwrap();
        let mut vm = KvmVm::new(&kvm, gm).unwrap();
        let mem_size = 0x1000;
        let mem = MemoryMapping::new(mem_size).unwrap();
        let slot = vm
            .add_memory_region(GuestAddress(0x1000), Box::new(mem), false, false)
            .unwrap();
        vm.remove_memory_region(slot).unwrap();
    }

    #[test]
    fn remove_invalid_memory() {
        let kvm = Kvm::new().unwrap();
        let gm = GuestMemory::new(&[(GuestAddress(0), 0x1000)]).unwrap();
        let mut vm = KvmVm::new(&kvm, gm).unwrap();
        assert!(vm.remove_memory_region(0).is_err());
    }

    #[test]
    fn overlap_memory() {
        let kvm = Kvm::new().unwrap();
        let gm = GuestMemory::new(&[(GuestAddress(0), 0x10000)]).unwrap();
        let mut vm = KvmVm::new(&kvm, gm).unwrap();
        let mem_size = 0x2000;
        let mem = MemoryMapping::new(mem_size).unwrap();
        assert!(vm
            .add_memory_region(GuestAddress(0x2000), Box::new(mem), false, false)
            .is_err());
    }

    #[test]
    fn sync_memory() {
        let kvm = Kvm::new().unwrap();
        let gm =
            GuestMemory::new(&[(GuestAddress(0), 0x1000), (GuestAddress(0x5000), 0x5000)]).unwrap();
        let mut vm = KvmVm::new(&kvm, gm).unwrap();
        let mem_size = 0x1000;
        let mem = MemoryMappingArena::new(mem_size).unwrap();
        let slot = vm
            .add_memory_region(GuestAddress(0x1000), Box::new(mem), false, false)
            .unwrap();
        vm.msync_memory_region(slot, mem_size, 0).unwrap();
        assert!(vm.msync_memory_region(slot, mem_size + 1, 0).is_err());
        assert!(vm.msync_memory_region(slot + 1, mem_size, 0).is_err());
    }
}