summary refs log tree commit diff
path: root/devices/src/virtio/descriptor_utils.rs
blob: 990f147f7a4aff50e83a2a2a138cc045383be58c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
// Copyright 2019 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::cmp;
use std::collections::VecDeque;
use std::fmt::{self, Display};
use std::io::{self, Read, Write};
use std::iter::FromIterator;
use std::marker::PhantomData;
use std::mem::{size_of, MaybeUninit};
use std::ptr::copy_nonoverlapping;
use std::result;

use data_model::{DataInit, Le16, Le32, Le64, VolatileMemory, VolatileMemoryError, VolatileSlice};
use sys_util::{
    FileReadWriteAtVolatile, FileReadWriteVolatile, GuestAddress, GuestMemory, IntoIovec,
};

use super::DescriptorChain;

#[derive(Debug)]
pub enum Error {
    DescriptorChainOverflow,
    GuestMemoryError(sys_util::GuestMemoryError),
    InvalidChain,
    IoError(io::Error),
    SplitOutOfBounds(usize),
    VolatileMemoryError(VolatileMemoryError),
}

impl Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        use self::Error::*;

        match self {
            DescriptorChainOverflow => write!(
                f,
                "the combined length of all the buffers in a `DescriptorChain` would overflow"
            ),
            GuestMemoryError(e) => write!(f, "descriptor guest memory error: {}", e),
            InvalidChain => write!(f, "invalid descriptor chain"),
            IoError(e) => write!(f, "descriptor I/O error: {}", e),
            SplitOutOfBounds(off) => write!(f, "`DescriptorChain` split is out of bounds: {}", off),
            VolatileMemoryError(e) => write!(f, "volatile memory error: {}", e),
        }
    }
}

type Result<T> = result::Result<T, Error>;

impl std::error::Error for Error {}

#[derive(Clone)]
struct DescriptorChainConsumer<'a> {
    buffers: VecDeque<VolatileSlice<'a>>,
    bytes_consumed: usize,
}

impl<'a> DescriptorChainConsumer<'a> {
    fn available_bytes(&self) -> usize {
        // This is guaranteed not to overflow because the total length of the chain
        // is checked during all creations of `DescriptorChainConsumer` (see
        // `Reader::new()` and `Writer::new()`).
        self.buffers
            .iter()
            .fold(0usize, |count, vs| count + vs.size() as usize)
    }

    fn bytes_consumed(&self) -> usize {
        self.bytes_consumed
    }

    /// Consumes at most `count` bytes from the `DescriptorChain`. Callers must provide a function
    /// that takes a `&[VolatileSlice]` and returns the total number of bytes consumed. This
    /// function guarantees that the combined length of all the slices in the `&[VolatileSlice]` is
    /// less than or equal to `count`.
    ///
    /// # Errors
    ///
    /// If the provided function returns any error then no bytes are consumed from the buffer and
    /// the error is returned to the caller.
    fn consume<F>(&mut self, count: usize, f: F) -> io::Result<usize>
    where
        F: FnOnce(&[VolatileSlice]) -> io::Result<usize>,
    {
        let mut buflen = 0;
        let mut bufs = Vec::with_capacity(self.buffers.len());
        for &vs in &self.buffers {
            if buflen >= count {
                break;
            }

            let rem = count - buflen;
            if (rem as u64) < vs.size() {
                let buf = vs.sub_slice(0, rem as u64).map_err(|e| {
                    io::Error::new(io::ErrorKind::InvalidData, Error::VolatileMemoryError(e))
                })?;
                bufs.push(buf);
                buflen += rem;
            } else {
                bufs.push(vs);
                buflen += vs.size() as usize;
            }
        }

        if bufs.is_empty() {
            return Ok(0);
        }

        let bytes_consumed = f(&*bufs)?;

        // This can happen if a driver tricks a device into reading/writing more data than
        // fits in a `usize`.
        let total_bytes_consumed =
            self.bytes_consumed
                .checked_add(bytes_consumed)
                .ok_or_else(|| {
                    io::Error::new(io::ErrorKind::InvalidData, Error::DescriptorChainOverflow)
                })?;

        let mut rem = bytes_consumed;
        while let Some(vs) = self.buffers.pop_front() {
            if (rem as u64) < vs.size() {
                // Split the slice and push the remainder back into the buffer list. Safe because we
                // know that `rem` is not out of bounds due to the check and we checked the bounds
                // on `vs` when we added it to the buffer list.
                self.buffers.push_front(vs.offset(rem as u64).unwrap());
                break;
            }

            // No need for checked math because we know that `vs.size() <= rem`.
            rem -= vs.size() as usize;
        }

        self.bytes_consumed = total_bytes_consumed;

        Ok(bytes_consumed)
    }

    fn split_at(&mut self, offset: usize) -> Result<DescriptorChainConsumer<'a>> {
        let mut rem = offset;
        let pos = self.buffers.iter().position(|vs| {
            if (rem as u64) < vs.size() {
                true
            } else {
                rem -= vs.size() as usize;
                false
            }
        });

        if let Some(at) = pos {
            let mut other = self.buffers.split_off(at);

            if rem > 0 {
                // There must be at least one element in `other` because we checked
                // its `size` value in the call to `position` above.
                let front = other.pop_front().expect("empty VecDeque after split");
                self.buffers.push_back(
                    front
                        .sub_slice(0, rem as u64)
                        .map_err(Error::VolatileMemoryError)?,
                );
                other.push_front(
                    front
                        .offset(rem as u64)
                        .map_err(Error::VolatileMemoryError)?,
                );
            }

            Ok(DescriptorChainConsumer {
                buffers: other,
                bytes_consumed: 0,
            })
        } else if rem == 0 {
            Ok(DescriptorChainConsumer {
                buffers: VecDeque::new(),
                bytes_consumed: 0,
            })
        } else {
            Err(Error::SplitOutOfBounds(offset))
        }
    }

    fn get_iovec(&mut self, len: usize) -> io::Result<DescriptorIovec<'a>> {
        let mut iovec = Vec::new();

        self.consume(len, |bufs| {
            let mut total = 0;
            for vs in bufs {
                iovec.push(libc::iovec {
                    iov_base: vs.as_ptr() as *mut libc::c_void,
                    iov_len: vs.size() as usize,
                });
                total += vs.size() as usize;
            }
            Ok(total)
        })?;

        Ok(DescriptorIovec {
            iovec,
            mem: PhantomData,
        })
    }
}

/// Provides high-level interface over the sequence of memory regions
/// defined by readable descriptors in the descriptor chain.
///
/// Note that virtio spec requires driver to place any device-writable
/// descriptors after any device-readable descriptors (2.6.4.2 in Virtio Spec v1.1).
/// Reader will skip iterating over descriptor chain when first writable
/// descriptor is encountered.
#[derive(Clone)]
pub struct Reader<'a> {
    buffer: DescriptorChainConsumer<'a>,
}

/// An iterator over `DataInit` objects on readable descriptors in the descriptor chain.
pub struct ReaderIterator<'a, T: DataInit> {
    reader: &'a mut Reader<'a>,
    phantom: PhantomData<T>,
}

impl<'a, T: DataInit> Iterator for ReaderIterator<'a, T> {
    type Item = io::Result<T>;

    fn next(&mut self) -> Option<io::Result<T>> {
        if self.reader.available_bytes() == 0 {
            None
        } else {
            Some(self.reader.read_obj())
        }
    }
}

impl<'a> Reader<'a> {
    /// Construct a new Reader wrapper over `desc_chain`.
    pub fn new(mem: &'a GuestMemory, desc_chain: DescriptorChain<'a>) -> Result<Reader<'a>> {
        // TODO(jstaron): Update this code to take the indirect descriptors into account.
        let mut total_len: usize = 0;
        let buffers = desc_chain
            .into_iter()
            .readable()
            .map(|desc| {
                // Verify that summing the descriptor sizes does not overflow.
                // This can happen if a driver tricks a device into reading more data than
                // fits in a `usize`.
                total_len = total_len
                    .checked_add(desc.len as usize)
                    .ok_or(Error::DescriptorChainOverflow)?;

                mem.get_slice(desc.addr.offset(), desc.len.into())
                    .map_err(Error::VolatileMemoryError)
            })
            .collect::<Result<VecDeque<VolatileSlice<'a>>>>()?;
        Ok(Reader {
            buffer: DescriptorChainConsumer {
                buffers,
                bytes_consumed: 0,
            },
        })
    }

    /// Reads an object from the descriptor chain buffer.
    pub fn read_obj<T: DataInit>(&mut self) -> io::Result<T> {
        let mut obj = MaybeUninit::<T>::uninit();

        // Safe because `MaybeUninit` guarantees that the pointer is valid for
        // `size_of::<T>()` bytes.
        let buf = unsafe {
            ::std::slice::from_raw_parts_mut(obj.as_mut_ptr() as *mut u8, size_of::<T>())
        };

        self.read_exact(buf)?;

        // Safe because any type that implements `DataInit` can be considered initialized
        // even if it is filled with random data.
        Ok(unsafe { obj.assume_init() })
    }

    /// Reads objects by consuming all the remaining data in the descriptor chain buffer and returns
    /// them as a collection. Returns an error if the size of the remaining data is indivisible by
    /// the size of an object of type `T`.
    pub fn collect<C: FromIterator<io::Result<T>>, T: DataInit>(&'a mut self) -> C {
        C::from_iter(self.iter())
    }

    /// Creates an iterator for sequentially reading `DataInit` objects from the `Reader`. Unlike
    /// `collect`, this doesn't consume all the remaining data in the `Reader` and doesn't require
    /// the objects to be stored in a separate collection.
    pub fn iter<T: DataInit>(&'a mut self) -> ReaderIterator<'a, T> {
        ReaderIterator {
            reader: self,
            phantom: PhantomData,
        }
    }

    /// Reads data from the descriptor chain buffer into a file descriptor.
    /// Returns the number of bytes read from the descriptor chain buffer.
    /// The number of bytes read can be less than `count` if there isn't
    /// enough data in the descriptor chain buffer.
    pub fn read_to<F: FileReadWriteVolatile>(
        &mut self,
        mut dst: F,
        count: usize,
    ) -> io::Result<usize> {
        self.buffer
            .consume(count, |bufs| dst.write_vectored_volatile(bufs))
    }

    /// Reads data from the descriptor chain buffer into a File at offset `off`.
    /// Returns the number of bytes read from the descriptor chain buffer.
    /// The number of bytes read can be less than `count` if there isn't
    /// enough data in the descriptor chain buffer.
    pub fn read_to_at<F: FileReadWriteAtVolatile>(
        &mut self,
        mut dst: F,
        count: usize,
        off: u64,
    ) -> io::Result<usize> {
        self.buffer
            .consume(count, |bufs| dst.write_vectored_at_volatile(bufs, off))
    }

    pub fn read_exact_to<F: FileReadWriteVolatile>(
        &mut self,
        mut dst: F,
        mut count: usize,
    ) -> io::Result<()> {
        while count > 0 {
            match self.read_to(&mut dst, count) {
                Ok(0) => {
                    return Err(io::Error::new(
                        io::ErrorKind::UnexpectedEof,
                        "failed to fill whole buffer",
                    ))
                }
                Ok(n) => count -= n,
                Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
                Err(e) => return Err(e),
            }
        }

        Ok(())
    }

    pub fn read_exact_to_at<F: FileReadWriteAtVolatile>(
        &mut self,
        mut dst: F,
        mut count: usize,
        mut off: u64,
    ) -> io::Result<()> {
        while count > 0 {
            match self.read_to_at(&mut dst, count, off) {
                Ok(0) => {
                    return Err(io::Error::new(
                        io::ErrorKind::UnexpectedEof,
                        "failed to fill whole buffer",
                    ))
                }
                Ok(n) => {
                    count -= n;
                    off += n as u64;
                }
                Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
                Err(e) => return Err(e),
            }
        }

        Ok(())
    }

    /// Returns number of bytes available for reading.  May return an error if the combined
    /// lengths of all the buffers in the DescriptorChain would cause an integer overflow.
    pub fn available_bytes(&self) -> usize {
        self.buffer.available_bytes()
    }

    /// Returns number of bytes already read from the descriptor chain buffer.
    pub fn bytes_read(&self) -> usize {
        self.buffer.bytes_consumed()
    }

    /// Splits this `Reader` into two at the given offset in the `DescriptorChain` buffer.
    /// After the split, `self` will be able to read up to `offset` bytes while the returned
    /// `Reader` can read up to `available_bytes() - offset` bytes.  Returns an error if
    /// `offset > self.available_bytes()`.
    pub fn split_at(&mut self, offset: usize) -> Result<Reader<'a>> {
        self.buffer.split_at(offset).map(|buffer| Reader { buffer })
    }

    /// Returns a DescriptorIovec for the next `len` bytes of the descriptor chain
    /// buffer, which can be used as an IntoIovec.
    pub fn get_iovec(&mut self, len: usize) -> io::Result<DescriptorIovec<'a>> {
        self.buffer.get_iovec(len)
    }
}

impl<'a> io::Read for Reader<'a> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.buffer.consume(buf.len(), |bufs| {
            let mut rem = buf;
            let mut total = 0;
            for vs in bufs {
                // This is guaranteed by the implementation of `consume`.
                debug_assert_eq!(vs.size(), cmp::min(rem.len() as u64, vs.size()));

                // Safe because we have already verified that `vs` points to valid memory.
                unsafe {
                    copy_nonoverlapping(
                        vs.as_ptr() as *const u8,
                        rem.as_mut_ptr(),
                        vs.size() as usize,
                    );
                }
                let copied = vs.size() as usize;
                rem = &mut rem[copied..];
                total += copied;
            }
            Ok(total)
        })
    }
}

/// Provides high-level interface over the sequence of memory regions
/// defined by writable descriptors in the descriptor chain.
///
/// Note that virtio spec requires driver to place any device-writable
/// descriptors after any device-readable descriptors (2.6.4.2 in Virtio Spec v1.1).
/// Writer will start iterating the descriptors from the first writable one and will
/// assume that all following descriptors are writable.
#[derive(Clone)]
pub struct Writer<'a> {
    buffer: DescriptorChainConsumer<'a>,
}

impl<'a> Writer<'a> {
    /// Construct a new Writer wrapper over `desc_chain`.
    pub fn new(mem: &'a GuestMemory, desc_chain: DescriptorChain<'a>) -> Result<Writer<'a>> {
        let mut total_len: usize = 0;
        let buffers = desc_chain
            .into_iter()
            .writable()
            .map(|desc| {
                // Verify that summing the descriptor sizes does not overflow.
                // This can happen if a driver tricks a device into writing more data than
                // fits in a `usize`.
                total_len = total_len
                    .checked_add(desc.len as usize)
                    .ok_or(Error::DescriptorChainOverflow)?;

                mem.get_slice(desc.addr.offset(), desc.len.into())
                    .map_err(Error::VolatileMemoryError)
            })
            .collect::<Result<VecDeque<VolatileSlice<'a>>>>()?;
        Ok(Writer {
            buffer: DescriptorChainConsumer {
                buffers,
                bytes_consumed: 0,
            },
        })
    }

    /// Writes an object to the descriptor chain buffer.
    pub fn write_obj<T: DataInit>(&mut self, val: T) -> io::Result<()> {
        self.write_all(val.as_slice())
    }

    /// Writes a collection of objects into the descriptor chain buffer.
    pub fn consume<T: DataInit, C: IntoIterator<Item = T>>(&mut self, vals: C) -> io::Result<()> {
        vals.into_iter().map(|v| self.write_obj(v)).collect()
    }

    /// Returns number of bytes available for writing.  May return an error if the combined
    /// lengths of all the buffers in the DescriptorChain would cause an overflow.
    pub fn available_bytes(&self) -> usize {
        self.buffer.available_bytes()
    }

    /// Writes data to the descriptor chain buffer from a file descriptor.
    /// Returns the number of bytes written to the descriptor chain buffer.
    /// The number of bytes written can be less than `count` if
    /// there isn't enough data in the descriptor chain buffer.
    pub fn write_from<F: FileReadWriteVolatile>(
        &mut self,
        mut src: F,
        count: usize,
    ) -> io::Result<usize> {
        self.buffer
            .consume(count, |bufs| src.read_vectored_volatile(bufs))
    }

    /// Writes data to the descriptor chain buffer from a File at offset `off`.
    /// Returns the number of bytes written to the descriptor chain buffer.
    /// The number of bytes written can be less than `count` if
    /// there isn't enough data in the descriptor chain buffer.
    pub fn write_from_at<F: FileReadWriteAtVolatile>(
        &mut self,
        mut src: F,
        count: usize,
        off: u64,
    ) -> io::Result<usize> {
        self.buffer
            .consume(count, |bufs| src.read_vectored_at_volatile(bufs, off))
    }

    pub fn write_all_from<F: FileReadWriteVolatile>(
        &mut self,
        mut src: F,
        mut count: usize,
    ) -> io::Result<()> {
        while count > 0 {
            match self.write_from(&mut src, count) {
                Ok(0) => {
                    return Err(io::Error::new(
                        io::ErrorKind::WriteZero,
                        "failed to write whole buffer",
                    ))
                }
                Ok(n) => count -= n,
                Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
                Err(e) => return Err(e),
            }
        }

        Ok(())
    }

    pub fn write_all_from_at<F: FileReadWriteAtVolatile>(
        &mut self,
        mut src: F,
        mut count: usize,
        mut off: u64,
    ) -> io::Result<()> {
        while count > 0 {
            match self.write_from_at(&mut src, count, off) {
                Ok(0) => {
                    return Err(io::Error::new(
                        io::ErrorKind::WriteZero,
                        "failed to write whole buffer",
                    ))
                }
                Ok(n) => {
                    count -= n;
                    off += n as u64;
                }
                Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
                Err(e) => return Err(e),
            }
        }
        Ok(())
    }

    /// Returns number of bytes already written to the descriptor chain buffer.
    pub fn bytes_written(&self) -> usize {
        self.buffer.bytes_consumed()
    }

    /// Splits this `Writer` into two at the given offset in the `DescriptorChain` buffer.
    /// After the split, `self` will be able to write up to `offset` bytes while the returned
    /// `Writer` can write up to `available_bytes() - offset` bytes.  Returns an error if
    /// `offset > self.available_bytes()`.
    pub fn split_at(&mut self, offset: usize) -> Result<Writer<'a>> {
        self.buffer.split_at(offset).map(|buffer| Writer { buffer })
    }

    /// Returns a DescriptorIovec for the next `len` bytes of the descriptor chain
    /// buffer, which can be used as an IntoIovec.
    pub fn get_iovec(&mut self, len: usize) -> io::Result<DescriptorIovec<'a>> {
        self.buffer.get_iovec(len)
    }
}

impl<'a> io::Write for Writer<'a> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.buffer.consume(buf.len(), |bufs| {
            let mut rem = buf;
            let mut total = 0;
            for vs in bufs {
                // This is guaranteed by the implementation of `consume`.
                debug_assert_eq!(vs.size(), cmp::min(rem.len() as u64, vs.size()));

                // Safe because we have already verified that `vs` points to valid memory.
                unsafe {
                    copy_nonoverlapping(rem.as_ptr(), vs.as_ptr(), vs.size() as usize);
                }
                let copied = vs.size() as usize;
                rem = &rem[copied..];
                total += copied;
            }
            Ok(total)
        })
    }

    fn flush(&mut self) -> io::Result<()> {
        // Nothing to flush since the writes go straight into the buffer.
        Ok(())
    }
}

pub struct DescriptorIovec<'a> {
    iovec: Vec<libc::iovec>,
    mem: PhantomData<&'a GuestMemory>,
}

// Safe because the lifetime of DescriptorIovec is tied to the underlying GuestMemory.
unsafe impl<'a> IntoIovec for DescriptorIovec<'a> {
    fn into_iovec(&self) -> Vec<libc::iovec> {
        self.iovec.clone()
    }
}

const VIRTQ_DESC_F_NEXT: u16 = 0x1;
const VIRTQ_DESC_F_WRITE: u16 = 0x2;

#[derive(Copy, Clone, PartialEq, Eq)]
pub enum DescriptorType {
    Readable,
    Writable,
}

#[derive(Copy, Clone, Debug)]
#[repr(C)]
struct virtq_desc {
    addr: Le64,
    len: Le32,
    flags: Le16,
    next: Le16,
}

// Safe because it only has data and has no implicit padding.
unsafe impl DataInit for virtq_desc {}

/// Test utility function to create a descriptor chain in guest memory.
pub fn create_descriptor_chain(
    memory: &GuestMemory,
    descriptor_array_addr: GuestAddress,
    mut buffers_start_addr: GuestAddress,
    descriptors: Vec<(DescriptorType, u32)>,
    spaces_between_regions: u32,
) -> Result<DescriptorChain> {
    let descriptors_len = descriptors.len();
    for (index, (type_, size)) in descriptors.into_iter().enumerate() {
        let mut flags = 0;
        if let DescriptorType::Writable = type_ {
            flags |= VIRTQ_DESC_F_WRITE;
        }
        if index + 1 < descriptors_len {
            flags |= VIRTQ_DESC_F_NEXT;
        }

        let index = index as u16;
        let desc = virtq_desc {
            addr: buffers_start_addr.offset().into(),
            len: size.into(),
            flags: flags.into(),
            next: (index + 1).into(),
        };

        let offset = size + spaces_between_regions;
        buffers_start_addr = buffers_start_addr
            .checked_add(offset as u64)
            .ok_or(Error::InvalidChain)?;

        let _ = memory.write_obj_at_addr(
            desc,
            descriptor_array_addr
                .checked_add(index as u64 * std::mem::size_of::<virtq_desc>() as u64)
                .ok_or(Error::InvalidChain)?,
        );
    }

    DescriptorChain::checked_new(memory, descriptor_array_addr, 0x100, 0, 0)
        .ok_or(Error::InvalidChain)
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::fs::{File, OpenOptions};
    use tempfile::TempDir;

    #[test]
    fn reader_test_simple_chain() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![
                (Readable, 8),
                (Readable, 16),
                (Readable, 18),
                (Readable, 64),
            ],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut reader = Reader::new(&memory, chain).expect("failed to create Reader");
        assert_eq!(reader.available_bytes(), 106);
        assert_eq!(reader.bytes_read(), 0);

        let mut buffer = [0 as u8; 64];
        if let Err(_) = reader.read_exact(&mut buffer) {
            panic!("read_exact should not fail here");
        }

        assert_eq!(reader.available_bytes(), 42);
        assert_eq!(reader.bytes_read(), 64);

        match reader.read(&mut buffer) {
            Err(_) => panic!("read should not fail here"),
            Ok(length) => assert_eq!(length, 42),
        }

        assert_eq!(reader.available_bytes(), 0);
        assert_eq!(reader.bytes_read(), 106);
    }

    #[test]
    fn writer_test_simple_chain() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![
                (Writable, 8),
                (Writable, 16),
                (Writable, 18),
                (Writable, 64),
            ],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut writer = Writer::new(&memory, chain).expect("failed to create Writer");
        assert_eq!(writer.available_bytes(), 106);
        assert_eq!(writer.bytes_written(), 0);

        let mut buffer = [0 as u8; 64];
        if let Err(_) = writer.write_all(&mut buffer) {
            panic!("write_all should not fail here");
        }

        assert_eq!(writer.available_bytes(), 42);
        assert_eq!(writer.bytes_written(), 64);

        match writer.write(&mut buffer) {
            Err(_) => panic!("write should not fail here"),
            Ok(length) => assert_eq!(length, 42),
        }

        assert_eq!(writer.available_bytes(), 0);
        assert_eq!(writer.bytes_written(), 106);
    }

    #[test]
    fn reader_test_incompatible_chain() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![(Writable, 8)],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut reader = Reader::new(&memory, chain).expect("failed to create Reader");
        assert_eq!(reader.available_bytes(), 0);
        assert_eq!(reader.bytes_read(), 0);

        assert!(reader.read_obj::<u8>().is_err());

        assert_eq!(reader.available_bytes(), 0);
        assert_eq!(reader.bytes_read(), 0);
    }

    #[test]
    fn writer_test_incompatible_chain() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![(Readable, 8)],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut writer = Writer::new(&memory, chain).expect("failed to create Writer");
        assert_eq!(writer.available_bytes(), 0);
        assert_eq!(writer.bytes_written(), 0);

        assert!(writer.write_obj(0u8).is_err());

        assert_eq!(writer.available_bytes(), 0);
        assert_eq!(writer.bytes_written(), 0);
    }

    #[test]
    fn reader_failing_io() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![(Readable, 256), (Readable, 256)],
            0,
        )
        .expect("create_descriptor_chain failed");

        let mut reader = Reader::new(&memory, chain).expect("failed to create Reader");

        // Open a file in read-only mode so writes to it to trigger an I/O error.
        let mut ro_file = File::open("/dev/zero").expect("failed to open /dev/zero");

        reader
            .read_exact_to(&mut ro_file, 512)
            .expect_err("successfully read more bytes than SharedMemory size");

        // The write above should have failed entirely, so we end up not writing any bytes at all.
        assert_eq!(reader.available_bytes(), 512);
        assert_eq!(reader.bytes_read(), 0);
    }

    #[test]
    fn writer_failing_io() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![(Writable, 256), (Writable, 256)],
            0,
        )
        .expect("create_descriptor_chain failed");

        let mut writer = Writer::new(&memory, chain).expect("failed to create Writer");

        let tempdir = TempDir::new().unwrap();
        let mut path = tempdir.path().to_owned();
        path.push("test_file");

        let mut file = OpenOptions::new()
            .read(true)
            .write(true)
            .create_new(true)
            .open(&path)
            .expect("failed to create temp file");

        file.set_len(384).unwrap();

        writer
            .write_all_from(&mut file, 512)
            .expect_err("successfully wrote more bytes than in SharedMemory");

        assert_eq!(writer.available_bytes(), 128);
        assert_eq!(writer.bytes_written(), 384);
    }

    #[test]
    fn reader_writer_shared_chain() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![
                (Readable, 16),
                (Readable, 16),
                (Readable, 96),
                (Writable, 64),
                (Writable, 1),
                (Writable, 3),
            ],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut reader = Reader::new(&memory, chain.clone()).expect("failed to create Reader");
        let mut writer = Writer::new(&memory, chain).expect("failed to create Writer");

        assert_eq!(reader.bytes_read(), 0);
        assert_eq!(writer.bytes_written(), 0);

        let mut buffer = Vec::with_capacity(200);

        assert_eq!(
            reader
                .read_to_end(&mut buffer)
                .expect("read should not fail here"),
            128
        );

        // The writable descriptors are only 68 bytes long.
        writer
            .write_all(&buffer[..68])
            .expect("write should not fail here");

        assert_eq!(reader.available_bytes(), 0);
        assert_eq!(reader.bytes_read(), 128);
        assert_eq!(writer.available_bytes(), 0);
        assert_eq!(writer.bytes_written(), 68);
    }

    #[test]
    fn reader_writer_shattered_object() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let secret: Le32 = 0x12345678.into();

        // Create a descriptor chain with memory regions that are properly separated.
        let chain_writer = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![(Writable, 1), (Writable, 1), (Writable, 1), (Writable, 1)],
            123,
        )
        .expect("create_descriptor_chain failed");
        let mut writer = Writer::new(&memory, chain_writer).expect("failed to create Writer");
        if let Err(_) = writer.write_obj(secret) {
            panic!("write_obj should not fail here");
        }

        // Now create new descriptor chain pointing to the same memory and try to read it.
        let chain_reader = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![(Readable, 1), (Readable, 1), (Readable, 1), (Readable, 1)],
            123,
        )
        .expect("create_descriptor_chain failed");
        let mut reader = Reader::new(&memory, chain_reader).expect("failed to create Reader");
        match reader.read_obj::<Le32>() {
            Err(_) => panic!("read_obj should not fail here"),
            Ok(read_secret) => assert_eq!(read_secret, secret),
        }
    }

    #[test]
    fn reader_unexpected_eof() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![(Readable, 256), (Readable, 256)],
            0,
        )
        .expect("create_descriptor_chain failed");

        let mut reader = Reader::new(&memory, chain).expect("failed to create Reader");

        let mut buf = Vec::with_capacity(1024);
        buf.resize(1024, 0);

        assert_eq!(
            reader
                .read_exact(&mut buf[..])
                .expect_err("read more bytes than available")
                .kind(),
            io::ErrorKind::UnexpectedEof
        );
    }

    #[test]
    fn split_border() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![
                (Readable, 16),
                (Readable, 16),
                (Readable, 96),
                (Writable, 64),
                (Writable, 1),
                (Writable, 3),
            ],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut reader = Reader::new(&memory, chain).expect("failed to create Reader");

        let other = reader.split_at(32).expect("failed to split Reader");
        assert_eq!(reader.available_bytes(), 32);
        assert_eq!(other.available_bytes(), 96);
    }

    #[test]
    fn split_middle() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![
                (Readable, 16),
                (Readable, 16),
                (Readable, 96),
                (Writable, 64),
                (Writable, 1),
                (Writable, 3),
            ],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut reader = Reader::new(&memory, chain).expect("failed to create Reader");

        let other = reader.split_at(24).expect("failed to split Reader");
        assert_eq!(reader.available_bytes(), 24);
        assert_eq!(other.available_bytes(), 104);
    }

    #[test]
    fn split_end() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![
                (Readable, 16),
                (Readable, 16),
                (Readable, 96),
                (Writable, 64),
                (Writable, 1),
                (Writable, 3),
            ],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut reader = Reader::new(&memory, chain).expect("failed to create Reader");

        let other = reader.split_at(128).expect("failed to split Reader");
        assert_eq!(reader.available_bytes(), 128);
        assert_eq!(other.available_bytes(), 0);
    }

    #[test]
    fn split_beginning() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![
                (Readable, 16),
                (Readable, 16),
                (Readable, 96),
                (Writable, 64),
                (Writable, 1),
                (Writable, 3),
            ],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut reader = Reader::new(&memory, chain).expect("failed to create Reader");

        let other = reader.split_at(0).expect("failed to split Reader");
        assert_eq!(reader.available_bytes(), 0);
        assert_eq!(other.available_bytes(), 128);
    }

    #[test]
    fn split_outofbounds() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![
                (Readable, 16),
                (Readable, 16),
                (Readable, 96),
                (Writable, 64),
                (Writable, 1),
                (Writable, 3),
            ],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut reader = Reader::new(&memory, chain).expect("failed to create Reader");

        if let Ok(_) = reader.split_at(256) {
            panic!("successfully split Reader with out of bounds offset");
        }
    }

    #[test]
    fn read_full() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![(Readable, 16), (Readable, 16), (Readable, 16)],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut reader = Reader::new(&memory, chain).expect("failed to create Reader");

        let mut buf = vec![0u8; 64];
        assert_eq!(
            reader.read(&mut buf[..]).expect("failed to read to buffer"),
            48
        );
    }

    #[test]
    fn write_full() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();

        let chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![(Writable, 16), (Writable, 16), (Writable, 16)],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut writer = Writer::new(&memory, chain).expect("failed to create Writer");

        let buf = vec![0xdeu8; 64];
        assert_eq!(
            writer.write(&buf[..]).expect("failed to write from buffer"),
            48
        );
    }

    #[test]
    fn consume_collect() {
        use DescriptorType::*;

        let memory_start_addr = GuestAddress(0x0);
        let memory = GuestMemory::new(&vec![(memory_start_addr, 0x10000)]).unwrap();
        let vs: Vec<Le64> = vec![
            0x0101010101010101.into(),
            0x0202020202020202.into(),
            0x0303030303030303.into(),
        ];

        let write_chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![(Writable, 24)],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut writer = Writer::new(&memory, write_chain).expect("failed to create Writer");
        writer
            .consume(vs.clone())
            .expect("failed to consume() a vector");

        let read_chain = create_descriptor_chain(
            &memory,
            GuestAddress(0x0),
            GuestAddress(0x100),
            vec![(Readable, 24)],
            0,
        )
        .expect("create_descriptor_chain failed");
        let mut reader = Reader::new(&memory, read_chain).expect("failed to create Reader");
        let vs_read = reader
            .collect::<io::Result<Vec<Le64>>, _>()
            .expect("failed to collect() values");
        assert_eq!(vs, vs_read);
    }
}