summary refs log tree commit diff
path: root/devices/src/pci/vfio_pci.rs
blob: 216f5eb6ed1dbface6dbbc20440daf5eb881761e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
// Copyright 2019 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::os::unix::io::{AsRawFd, RawFd};
use std::sync::Arc;
use std::u32;

use kvm::Datamatch;
use msg_socket::{MsgReceiver, MsgSender};
use resources::{Alloc, MmioType, SystemAllocator};
use sys_util::{error, EventFd, MemoryMapping};

use vfio_sys::*;
use vm_control::{
    MaybeOwnedFd, VmIrqRequest, VmIrqRequestSocket, VmIrqResponse, VmMemoryControlRequestSocket,
    VmMemoryRequest, VmMemoryResponse,
};

use crate::pci::pci_device::{Error as PciDeviceError, PciDevice};
use crate::pci::{PciClassCode, PciInterruptPin};

use crate::vfio::{VfioDevice, VfioIrqType};

const PCI_VENDOR_ID: u32 = 0x0;
const INTEL_VENDOR_ID: u16 = 0x8086;
const PCI_COMMAND: u32 = 0x4;
const PCI_COMMAND_MEMORY: u8 = 0x2;
const PCI_BASE_CLASS_CODE: u32 = 0x0B;
const PCI_HEADER_TYPE: usize = 0x0E;
const PCI_MULTI_FLAG: u32 = 0x0080_0000;

const PCI_INTERRUPT_PIN: u32 = 0x3D;

struct VfioPciConfig {
    device: Arc<VfioDevice>,
}

impl VfioPciConfig {
    fn new(device: Arc<VfioDevice>) -> Self {
        VfioPciConfig { device }
    }

    #[allow(dead_code)]
    fn read_config_byte(&self, offset: u32) -> u8 {
        let mut data: [u8; 1] = [0];
        self.device
            .region_read(VFIO_PCI_CONFIG_REGION_INDEX, data.as_mut(), offset.into());

        data[0]
    }

    #[allow(dead_code)]
    fn read_config_word(&self, offset: u32) -> u16 {
        let mut data: [u8; 2] = [0, 0];
        self.device
            .region_read(VFIO_PCI_CONFIG_REGION_INDEX, data.as_mut(), offset.into());

        u16::from_le_bytes(data)
    }

    #[allow(dead_code)]
    fn read_config_dword(&self, offset: u32) -> u32 {
        let mut data: [u8; 4] = [0, 0, 0, 0];
        self.device
            .region_read(VFIO_PCI_CONFIG_REGION_INDEX, data.as_mut(), offset.into());

        u32::from_le_bytes(data)
    }

    #[allow(dead_code)]
    fn write_config_byte(&self, buf: u8, offset: u32) {
        self.device.region_write(
            VFIO_PCI_CONFIG_REGION_INDEX,
            ::std::slice::from_ref(&buf),
            offset.into(),
        )
    }

    #[allow(dead_code)]
    fn write_config_word(&self, buf: u16, offset: u32) {
        let data: [u8; 2] = buf.to_le_bytes();
        self.device
            .region_write(VFIO_PCI_CONFIG_REGION_INDEX, &data, offset.into())
    }

    #[allow(dead_code)]
    fn write_config_dword(&self, buf: u32, offset: u32) {
        let data: [u8; 4] = buf.to_le_bytes();
        self.device
            .region_write(VFIO_PCI_CONFIG_REGION_INDEX, &data, offset.into())
    }
}

const PCI_CAPABILITY_LIST: u32 = 0x34;
const PCI_CAP_ID_MSI: u8 = 0x05;

// MSI registers
const PCI_MSI_NEXT_POINTER: u32 = 0x1; // Next cap pointer
const PCI_MSI_FLAGS: u32 = 0x2; // Message Control
const PCI_MSI_FLAGS_ENABLE: u16 = 0x0001; // MSI feature enabled
const PCI_MSI_FLAGS_64BIT: u16 = 0x0080; // 64-bit addresses allowed
const PCI_MSI_FLAGS_MASKBIT: u16 = 0x0100; // Per-vector masking capable
const PCI_MSI_ADDRESS_LO: u32 = 0x4; // MSI address lower 32 bits
const PCI_MSI_ADDRESS_HI: u32 = 0x8; // MSI address upper 32 bits (if 64 bit allowed)
const PCI_MSI_DATA_32: u32 = 0x8; // 16 bits of data for 32-bit message address
const PCI_MSI_DATA_64: u32 = 0xC; // 16 bits of date for 64-bit message address

// MSI length
const MSI_LENGTH_32BIT: u32 = 0xA;
const MSI_LENGTH_64BIT_WITHOUT_MASK: u32 = 0xE;
const MSI_LENGTH_64BIT_WITH_MASK: u32 = 0x18;

enum VfioMsiChange {
    Disable,
    Enable,
}

struct VfioMsiCap {
    offset: u32,
    size: u32,
    ctl: u16,
    address: u64,
    data: u16,
    vm_socket_irq: VmIrqRequestSocket,
    irqfd: Option<EventFd>,
    gsi: Option<u32>,
}

impl VfioMsiCap {
    fn new(config: &VfioPciConfig, vm_socket_irq: VmIrqRequestSocket) -> Option<Self> {
        // msi minimum size is 0xa
        let mut msi_len: u32 = MSI_LENGTH_32BIT;
        let mut cap_next: u32 = config.read_config_byte(PCI_CAPABILITY_LIST).into();
        while cap_next != 0 {
            let cap_id = config.read_config_byte(cap_next);
            // find msi cap
            if cap_id == PCI_CAP_ID_MSI {
                let msi_ctl = config.read_config_word(cap_next + PCI_MSI_FLAGS);
                if msi_ctl & PCI_MSI_FLAGS_64BIT != 0 {
                    msi_len = MSI_LENGTH_64BIT_WITHOUT_MASK;
                }
                if msi_ctl & PCI_MSI_FLAGS_MASKBIT != 0 {
                    msi_len = MSI_LENGTH_64BIT_WITH_MASK;
                }
                return Some(VfioMsiCap {
                    offset: cap_next,
                    size: msi_len,
                    ctl: 0,
                    address: 0,
                    data: 0,
                    vm_socket_irq,
                    irqfd: None,
                    gsi: None,
                });
            }
            let offset = cap_next + PCI_MSI_NEXT_POINTER;
            cap_next = config.read_config_byte(offset).into();
        }

        None
    }

    fn is_msi_reg(&self, index: u64, len: usize) -> bool {
        if index >= self.offset as u64
            && index + len as u64 <= (self.offset + self.size) as u64
            && len as u32 <= self.size
        {
            true
        } else {
            false
        }
    }

    fn write_msi_reg(&mut self, index: u64, data: &[u8]) -> Option<VfioMsiChange> {
        let len = data.len();
        let offset = index as u32 - self.offset;
        let mut ret: Option<VfioMsiChange> = None;
        let old_address = self.address;
        let old_data = self.data;

        // write msi ctl
        if len == 2 && offset == PCI_MSI_FLAGS {
            let was_enabled = self.is_msi_enabled();
            let value: [u8; 2] = [data[0], data[1]];
            self.ctl = u16::from_le_bytes(value);
            let is_enabled = self.is_msi_enabled();
            if !was_enabled && is_enabled {
                self.enable();
                ret = Some(VfioMsiChange::Enable);
            } else if was_enabled && !is_enabled {
                ret = Some(VfioMsiChange::Disable)
            }
        } else if len == 4 && offset == PCI_MSI_ADDRESS_LO && self.size == MSI_LENGTH_32BIT {
            //write 32 bit message address
            let value: [u8; 8] = [data[0], data[1], data[2], data[3], 0, 0, 0, 0];
            self.address = u64::from_le_bytes(value);
        } else if len == 4 && offset == PCI_MSI_ADDRESS_LO && self.size != MSI_LENGTH_32BIT {
            // write 64 bit message address low part
            let value: [u8; 8] = [data[0], data[1], data[2], data[3], 0, 0, 0, 0];
            self.address &= !0xffffffff;
            self.address |= u64::from_le_bytes(value);
        } else if len == 4 && offset == PCI_MSI_ADDRESS_HI && self.size != MSI_LENGTH_32BIT {
            //write 64 bit message address high part
            let value: [u8; 8] = [0, 0, 0, 0, data[0], data[1], data[2], data[3]];
            self.address &= 0xffffffff;
            self.address |= u64::from_le_bytes(value);
        } else if len == 8 && offset == PCI_MSI_ADDRESS_LO && self.size != MSI_LENGTH_32BIT {
            // write 64 bit message address
            let value: [u8; 8] = [
                data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7],
            ];
            self.address = u64::from_le_bytes(value);
        } else if len == 2
            && ((offset == PCI_MSI_DATA_32 && self.size == MSI_LENGTH_32BIT)
                || (offset == PCI_MSI_DATA_64 && self.size == MSI_LENGTH_64BIT_WITH_MASK)
                || (offset == PCI_MSI_DATA_64 && self.size == MSI_LENGTH_64BIT_WITHOUT_MASK))
        {
            // write message data
            let value: [u8; 2] = [data[0], data[1]];
            self.data = u16::from_le_bytes(value);
        }

        if self.is_msi_enabled() && (old_address != self.address || old_data != self.data) {
            self.add_msi_route();
        }

        ret
    }

    fn is_msi_enabled(&self) -> bool {
        self.ctl & PCI_MSI_FLAGS_ENABLE == PCI_MSI_FLAGS_ENABLE
    }

    fn add_msi_route(&self) {
        let gsi = match self.gsi {
            Some(g) => g,
            None => {
                error!("Add msi route but gsi is none");
                return;
            }
        };
        if let Err(e) = self.vm_socket_irq.send(&VmIrqRequest::AddMsiRoute {
            gsi,
            msi_address: self.address,
            msi_data: self.data.into(),
        }) {
            error!("failed to send AddMsiRoute request at {:?}", e);
            return;
        }
        match self.vm_socket_irq.recv() {
            Ok(VmIrqResponse::Err(e)) => error!("failed to call AddMsiRoute request {:?}", e),
            Ok(_) => {}
            Err(e) => error!("failed to receive AddMsiRoute response {:?}", e),
        }
    }

    fn allocate_one_msi(&mut self) {
        if self.irqfd.is_none() {
            match EventFd::new() {
                Ok(fd) => self.irqfd = Some(fd),
                Err(e) => {
                    error!("failed to create eventfd: {:?}", e);
                    return;
                }
            };
        }

        if let Err(e) = self.vm_socket_irq.send(&VmIrqRequest::AllocateOneMsi {
            irqfd: MaybeOwnedFd::Borrowed(self.irqfd.as_ref().unwrap().as_raw_fd()),
        }) {
            error!("failed to send AllocateOneMsi request: {:?}", e);
            return;
        }

        match self.vm_socket_irq.recv() {
            Ok(VmIrqResponse::AllocateOneMsi { gsi }) => self.gsi = Some(gsi),
            _ => error!("failed to receive AllocateOneMsi Response"),
        }
    }

    fn enable(&mut self) {
        if self.gsi.is_none() || self.irqfd.is_none() {
            self.allocate_one_msi();
        }

        self.add_msi_route();
    }

    fn get_msi_irqfd(&self) -> Option<&EventFd> {
        self.irqfd.as_ref()
    }

    fn get_vm_socket(&self) -> RawFd {
        self.vm_socket_irq.as_ref().as_raw_fd()
    }
}

struct MmioInfo {
    bar_index: u32,
    start: u64,
    length: u64,
}

struct IoInfo {
    bar_index: u32,
}

enum DeviceData {
    IntelGfxData { opregion_index: u32 },
}

/// Implements the Vfio Pci device, then a pci device is added into vm
pub struct VfioPciDevice {
    device: Arc<VfioDevice>,
    config: VfioPciConfig,
    pci_bus_dev: Option<(u8, u8)>,
    interrupt_evt: Option<EventFd>,
    interrupt_resample_evt: Option<EventFd>,
    mmio_regions: Vec<MmioInfo>,
    io_regions: Vec<IoInfo>,
    msi_cap: Option<VfioMsiCap>,
    irq_type: Option<VfioIrqType>,
    vm_socket_mem: VmMemoryControlRequestSocket,
    device_data: Option<DeviceData>,

    // scratch MemoryMapping to avoid unmap beform vm exit
    mem: Vec<MemoryMapping>,
}

impl VfioPciDevice {
    /// Constructs a new Vfio Pci device for the give Vfio device
    pub fn new(
        device: VfioDevice,
        vfio_device_socket_irq: VmIrqRequestSocket,
        vfio_device_socket_mem: VmMemoryControlRequestSocket,
    ) -> Self {
        let dev = Arc::new(device);
        let config = VfioPciConfig::new(Arc::clone(&dev));
        let msi_cap = VfioMsiCap::new(&config, vfio_device_socket_irq);

        let vendor_id = config.read_config_word(PCI_VENDOR_ID);
        let class_code = config.read_config_byte(PCI_BASE_CLASS_CODE);

        let is_intel_gfx = vendor_id == INTEL_VENDOR_ID
            && class_code == PciClassCode::DisplayController.get_register_value();
        let device_data = if is_intel_gfx {
            Some(DeviceData::IntelGfxData {
                opregion_index: u32::max_value(),
            })
        } else {
            None
        };

        VfioPciDevice {
            device: dev,
            config,
            pci_bus_dev: None,
            interrupt_evt: None,
            interrupt_resample_evt: None,
            mmio_regions: Vec::new(),
            io_regions: Vec::new(),
            msi_cap,
            irq_type: None,
            vm_socket_mem: vfio_device_socket_mem,
            device_data,
            mem: Vec::new(),
        }
    }

    fn is_intel_gfx(&self) -> bool {
        let mut ret = false;

        if let Some(device_data) = &self.device_data {
            match *device_data {
                DeviceData::IntelGfxData { .. } => ret = true,
            }
        }

        ret
    }

    fn find_region(&self, addr: u64) -> Option<MmioInfo> {
        for mmio_info in self.mmio_regions.iter() {
            if addr >= mmio_info.start && addr < mmio_info.start + mmio_info.length {
                return Some(MmioInfo {
                    bar_index: mmio_info.bar_index,
                    start: mmio_info.start,
                    length: mmio_info.length,
                });
            }
        }

        None
    }

    fn enable_intx(&mut self) {
        if self.interrupt_evt.is_none() || self.interrupt_resample_evt.is_none() {
            return;
        }

        if let Some(ref interrupt_evt) = self.interrupt_evt {
            if let Err(e) = self.device.irq_enable(interrupt_evt, VfioIrqType::Intx) {
                error!("Intx enable failed: {}", e);
                return;
            }
            if let Some(ref irq_resample_evt) = self.interrupt_resample_evt {
                if let Err(e) = self.device.irq_mask(VfioIrqType::Intx) {
                    error!("Intx mask failed: {}", e);
                    self.disable_intx();
                    return;
                }
                if let Err(e) = self.device.resample_virq_enable(irq_resample_evt) {
                    error!("resample enable failed: {}", e);
                    self.disable_intx();
                    return;
                }
                if let Err(e) = self.device.irq_unmask(VfioIrqType::Intx) {
                    error!("Intx unmask failed: {}", e);
                    self.disable_intx();
                    return;
                }
            }
        }

        self.irq_type = Some(VfioIrqType::Intx);
    }

    fn disable_intx(&mut self) {
        if let Err(e) = self.device.irq_disable(VfioIrqType::Intx) {
            error!("Intx disable failed: {}", e);
        }
        self.irq_type = None;
    }

    fn enable_msi(&mut self) {
        if let Some(irq_type) = &self.irq_type {
            match irq_type {
                VfioIrqType::Intx => self.disable_intx(),
                _ => return,
            }
        }

        let irqfd = match &self.msi_cap {
            Some(cap) => {
                if let Some(fd) = cap.get_msi_irqfd() {
                    fd
                } else {
                    self.enable_intx();
                    return;
                }
            }
            None => {
                self.enable_intx();
                return;
            }
        };

        if let Err(e) = self.device.irq_enable(irqfd, VfioIrqType::Msi) {
            error!("failed to enable msi: {}", e);
            self.enable_intx();
            return;
        }

        self.irq_type = Some(VfioIrqType::Msi);
    }

    fn disable_msi(&mut self) {
        if let Err(e) = self.device.irq_disable(VfioIrqType::Msi) {
            error!("failed to disable msi: {}", e);
            return;
        }

        self.enable_intx();
    }

    fn add_bar_mmap(&self, index: u32, bar_addr: u64) -> Vec<MemoryMapping> {
        let mut mem_map: Vec<MemoryMapping> = Vec::new();
        if self.device.get_region_flags(index) & VFIO_REGION_INFO_FLAG_MMAP != 0 {
            let mmaps = self.device.get_region_mmap(index);
            if mmaps.is_empty() {
                return mem_map;
            }

            for mmap in mmaps.iter() {
                let mmap_offset = mmap.offset;
                let mmap_size = mmap.size;
                let guest_map_start = bar_addr + mmap_offset;
                let region_offset = self.device.get_region_offset(index);
                let offset: usize = (region_offset + mmap_offset) as usize;
                if self
                    .vm_socket_mem
                    .send(&VmMemoryRequest::RegisterMmapMemory {
                        fd: MaybeOwnedFd::Borrowed(self.device.as_raw_fd()),
                        size: mmap_size as usize,
                        offset,
                        gpa: guest_map_start,
                    })
                    .is_err()
                {
                    break;
                }

                let response = match self.vm_socket_mem.recv() {
                    Ok(res) => res,
                    Err(_) => break,
                };
                match response {
                    VmMemoryResponse::Ok => {
                        // Even if vm has mapped this region, but it is in vm main process,
                        // device process doesn't has this mapping, but vfio_dma_map() need it
                        // in device process, so here map it again.
                        let mmap = match MemoryMapping::from_fd_offset(
                            self.device.as_ref(),
                            mmap_size as usize,
                            offset,
                        ) {
                            Ok(v) => v,
                            Err(_e) => break,
                        };
                        let host = (&mmap).as_ptr() as u64;
                        // Safe because the given guest_map_start is valid guest bar address. and
                        // the host pointer is correct and valid guaranteed by MemoryMapping interface.
                        match unsafe { self.device.vfio_dma_map(guest_map_start, mmap_size, host) }
                        {
                            Ok(_) => mem_map.push(mmap),
                            Err(e) => {
                                error!(
                                    "{}, index: {}, bar_addr:0x{:x}, host:0x{:x}",
                                    e, index, bar_addr, host
                                );
                                break;
                            }
                        }
                    }
                    _ => break,
                }
            }
        }

        mem_map
    }

    fn enable_bars_mmap(&mut self) {
        for mmio_info in self.mmio_regions.iter() {
            let mut mem_map = self.add_bar_mmap(mmio_info.bar_index, mmio_info.start);
            self.mem.append(&mut mem_map);
        }
    }
}

impl PciDevice for VfioPciDevice {
    fn debug_label(&self) -> String {
        "vfio pci device".to_string()
    }

    fn assign_bus_dev(&mut self, bus: u8, device: u8) {
        self.pci_bus_dev = Some((bus, device));
    }

    fn keep_fds(&self) -> Vec<RawFd> {
        let mut fds = self.device.keep_fds();
        if let Some(ref interrupt_evt) = self.interrupt_evt {
            fds.push(interrupt_evt.as_raw_fd());
        }
        if let Some(ref interrupt_resample_evt) = self.interrupt_resample_evt {
            fds.push(interrupt_resample_evt.as_raw_fd());
        }
        if let Some(msi_cap) = &self.msi_cap {
            fds.push(msi_cap.get_vm_socket());
        }
        fds.push(self.vm_socket_mem.as_raw_fd());
        fds
    }

    fn assign_irq(
        &mut self,
        irq_evt: EventFd,
        irq_resample_evt: EventFd,
        irq_num: u32,
        _irq_pin: PciInterruptPin,
    ) {
        self.config.write_config_byte(irq_num as u8, 0x3C);
        self.interrupt_evt = Some(irq_evt);
        self.interrupt_resample_evt = Some(irq_resample_evt);

        // enable INTX
        if self.config.read_config_byte(PCI_INTERRUPT_PIN) > 0 {
            self.enable_intx();
        }
    }

    fn allocate_io_bars(
        &mut self,
        resources: &mut SystemAllocator,
    ) -> Result<Vec<(u64, u64)>, PciDeviceError> {
        let mut ranges = Vec::new();
        let mut i = VFIO_PCI_BAR0_REGION_INDEX;
        let (bus, dev) = self
            .pci_bus_dev
            .expect("assign_bus_dev must be called prior to allocate_io_bars");

        while i <= VFIO_PCI_ROM_REGION_INDEX {
            let mut low: u32 = 0xffffffff;
            let offset: u32;
            if i == VFIO_PCI_ROM_REGION_INDEX {
                offset = 0x30;
            } else {
                offset = 0x10 + i * 4;
            }
            self.config.write_config_dword(low, offset);
            low = self.config.read_config_dword(offset);

            let low_flag = low & 0xf;
            let is_64bit = match low_flag & 0x4 {
                0x4 => true,
                _ => false,
            };
            if (low_flag & 0x1 == 0 || i == VFIO_PCI_ROM_REGION_INDEX) && low != 0 {
                let mut upper: u32 = 0xffffffff;
                if is_64bit {
                    self.config.write_config_dword(upper, offset + 4);
                    upper = self.config.read_config_dword(offset + 4);
                }

                low &= 0xffff_fff0;
                let mut size: u64 = u64::from(upper);
                size <<= 32;
                size |= u64::from(low);
                size = !size + 1;
                let mmio_type = match is_64bit {
                    false => MmioType::Low,
                    true => MmioType::High,
                };
                let bar_addr = resources
                    .mmio_allocator(mmio_type)
                    .allocate_with_align(
                        size,
                        Alloc::PciBar {
                            bus,
                            dev,
                            bar: i as u8,
                        },
                        "vfio_bar".to_string(),
                        size,
                    )
                    .map_err(|e| PciDeviceError::IoAllocationFailed(size, e))?;
                ranges.push((bar_addr, size));
                self.mmio_regions.push(MmioInfo {
                    bar_index: i,
                    start: bar_addr,
                    length: size,
                });

                low = bar_addr as u32;
                low |= low_flag;
                self.config.write_config_dword(low, offset);
                if is_64bit {
                    upper = (bar_addr >> 32) as u32;
                    self.config.write_config_dword(upper, offset + 4);
                }
            } else if low_flag & 0x1 == 0x1 {
                self.io_regions.push(IoInfo { bar_index: i });
            }

            if is_64bit {
                i += 2;
            } else {
                i += 1;
            }
        }

        if let Err(e) = self.device.setup_dma_map() {
            error!(
                "failed to add all guest memory regions into iommu table: {}",
                e
            );
        }

        // Quirk, enable igd memory for guest vga arbitrate, otherwise kernel vga arbitrate
        // driver doesn't claim this vga device, then xorg couldn't boot up.
        if self.is_intel_gfx() {
            let mut cmd = self.config.read_config_byte(PCI_COMMAND);
            cmd |= PCI_COMMAND_MEMORY;
            self.config.write_config_byte(cmd, PCI_COMMAND);
        }

        Ok(ranges)
    }

    fn allocate_device_bars(
        &mut self,
        resources: &mut SystemAllocator,
    ) -> Result<Vec<(u64, u64)>, PciDeviceError> {
        let mut ranges = Vec::new();

        if !self.is_intel_gfx() {
            return Ok(ranges);
        }

        // Make intel gfx's opregion as mmio bar, and allocate a gpa for it
        // then write this gpa into pci cfg register
        if let Some((index, size)) = self.device.get_cap_type_info(
            VFIO_REGION_TYPE_PCI_VENDOR_TYPE | (INTEL_VENDOR_ID as u32),
            VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION,
        ) {
            let (bus, dev) = self
                .pci_bus_dev
                .expect("assign_bus_dev must be called prior to allocate_device_bars");
            let bar_addr = resources
                .mmio_allocator(MmioType::Low)
                .allocate(
                    size,
                    Alloc::PciBar {
                        bus,
                        dev,
                        bar: (index * 4) as u8,
                    },
                    "vfio_bar".to_string(),
                )
                .map_err(|e| PciDeviceError::IoAllocationFailed(size, e))?;
            ranges.push((bar_addr, size));
            self.device_data = Some(DeviceData::IntelGfxData {
                opregion_index: index,
            });

            self.mmio_regions.push(MmioInfo {
                bar_index: index,
                start: bar_addr,
                length: size,
            });
            self.config.write_config_dword(bar_addr as u32, 0xFC);
        }

        Ok(ranges)
    }

    fn register_device_capabilities(&mut self) -> Result<(), PciDeviceError> {
        Ok(())
    }

    fn ioeventfds(&self) -> Vec<(&EventFd, u64, Datamatch)> {
        Vec::new()
    }

    fn read_config_register(&self, reg_idx: usize) -> u32 {
        let reg: u32 = (reg_idx * 4) as u32;

        let mut config = self.config.read_config_dword(reg);

        // Ignore IO bar
        if reg >= 0x10 && reg <= 0x24 {
            for io_info in self.io_regions.iter() {
                if io_info.bar_index * 4 + 0x10 == reg {
                    config = 0;
                }
            }
        } else if reg_idx == PCI_HEADER_TYPE / 4 {
            // Clear multifunction flags as pci_root doesn't
            // support multifunction.
            config &= !PCI_MULTI_FLAG;
        }

        // Quirk for intel graphic, set stolen memory size to 0 in pci_cfg[0x51]
        if self.is_intel_gfx() && reg == 0x50 {
            config &= 0xffff00ff;
        }

        config
    }

    fn write_config_register(&mut self, reg_idx: usize, offset: u64, data: &[u8]) {
        let start = (reg_idx * 4) as u64 + offset;

        let mut msi_change: Option<VfioMsiChange> = None;
        if let Some(msi_cap) = self.msi_cap.as_mut() {
            if msi_cap.is_msi_reg(start, data.len()) {
                msi_change = msi_cap.write_msi_reg(start, data);
            }
        }

        match msi_change {
            Some(VfioMsiChange::Enable) => self.enable_msi(),
            Some(VfioMsiChange::Disable) => self.disable_msi(),
            None => (),
        }

        // if guest enable memory access, then enable bar mappable once
        if start == PCI_COMMAND as u64
            && data.len() == 2
            && data[0] & PCI_COMMAND_MEMORY == PCI_COMMAND_MEMORY
            && self.mem.is_empty()
        {
            self.enable_bars_mmap();
        }

        self.device
            .region_write(VFIO_PCI_CONFIG_REGION_INDEX, data, start);
    }

    fn read_bar(&mut self, addr: u64, data: &mut [u8]) {
        if let Some(mmio_info) = self.find_region(addr) {
            let offset = addr - mmio_info.start;
            self.device.region_read(mmio_info.bar_index, data, offset);
        }
    }

    fn write_bar(&mut self, addr: u64, data: &[u8]) {
        if let Some(mmio_info) = self.find_region(addr) {
            // Ignore igd opregion's write
            if let Some(device_data) = &self.device_data {
                match *device_data {
                    DeviceData::IntelGfxData { opregion_index } => {
                        if opregion_index == mmio_info.bar_index {
                            return;
                        }
                    }
                }
            }

            let offset = addr - mmio_info.start;
            self.device.region_write(mmio_info.bar_index, data, offset);
        }
    }
}