// Copyright 2017 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use std; use std::cmp::min; use std::error; use std::ffi::CStr; use std::fmt; use std::fs::{File, OpenOptions}; use std::io::{self, stdin, Read}; use std::mem; use std::os::unix::io::FromRawFd; use std::os::unix::net::UnixDatagram; use std::path::{Path, PathBuf}; use std::str; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::{Arc, Barrier}; use std::thread; use std::thread::JoinHandle; use std::time::Duration; use libc::{self, c_int}; use rand::distributions::{IndependentSample, Range}; use rand::thread_rng; use byteorder::{ByteOrder, LittleEndian}; use devices::{self, PciDevice, VirtioPciDevice}; use io_jail::{self, Minijail}; use kvm::*; use msg_socket::{MsgReceiver, MsgSender, UnlinkMsgSocket}; use net_util::{Error as NetError, Tap}; use qcow::{self, ImageType, QcowFile}; use sys_util; use sys_util::*; use vhost; use vm_control::{VmRequest, VmResponse}; use Config; use arch::{self, LinuxArch, RunnableLinuxVm, VirtioDeviceStub, VmComponents}; #[cfg(any(target_arch = "arm", target_arch = "aarch64"))] use aarch64::AArch64 as Arch; #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] use x86_64::X8664arch as Arch; #[derive(Debug)] pub enum Error { BalloonDeviceNew(devices::virtio::BalloonError), BlockDeviceNew(sys_util::Error), BlockSignal(sys_util::signal::Error), BuildingVm(Box), CloneEventFd(sys_util::Error), CreateEventFd(sys_util::Error), CreatePollContext(sys_util::Error), CreateSignalFd(sys_util::SignalFdError), CreateSocket(io::Error), CreateTapDevice(NetError), CreateTimerFd(sys_util::Error), DetectImageType(qcow::Error), DeviceJail(io_jail::Error), DevicePivotRoot(io_jail::Error), Disk(io::Error), DiskImageLock(sys_util::Error), InvalidFdPath, InvalidWaylandPath, NetDeviceNew(devices::virtio::NetError), NoVarEmpty, OpenKernel(PathBuf, io::Error), P9DeviceNew(devices::virtio::P9Error), PollContextAdd(sys_util::Error), PollContextDelete(sys_util::Error), QcowDeviceCreate(qcow::Error), ReadLowmemAvailable(io::Error), ReadLowmemMargin(io::Error), RegisterBalloon(arch::DeviceRegistrationError), RegisterBlock(arch::DeviceRegistrationError), RegisterGpu(arch::DeviceRegistrationError), RegisterNet(arch::DeviceRegistrationError), RegisterP9(arch::DeviceRegistrationError), RegisterRng(arch::DeviceRegistrationError), RegisterSignalHandler(sys_util::Error), RegisterWayland(arch::DeviceRegistrationError), ResetTimerFd(sys_util::Error), RngDeviceNew(devices::virtio::RngError), SettingGidMap(io_jail::Error), SettingUidMap(io_jail::Error), SignalFd(sys_util::SignalFdError), SpawnVcpu(io::Error), TimerFd(sys_util::Error), ValidateRawFd(sys_util::Error), VhostNetDeviceNew(devices::virtio::vhost::Error), VhostVsockDeviceNew(devices::virtio::vhost::Error), VirtioPciDev(sys_util::Error), WaylandDeviceNew(sys_util::Error), LoadKernel(Box), } impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { Error::BalloonDeviceNew(e) => write!(f, "failed to create balloon: {:?}", e), Error::BlockDeviceNew(e) => write!(f, "failed to create block device: {:?}", e), Error::BlockSignal(e) => write!(f, "failed to block signal: {:?}", e), Error::BuildingVm(e) => write!(f, "The architecture failed to build the vm: {:?}", e), Error::CloneEventFd(e) => write!(f, "failed to clone eventfd: {:?}", e), Error::CreateEventFd(e) => write!(f, "failed to create eventfd: {:?}", e), Error::CreatePollContext(e) => write!(f, "failed to create poll context: {:?}", e), Error::CreateSignalFd(e) => write!(f, "failed to create signalfd: {:?}", e), Error::CreateSocket(e) => write!(f, "failed to create socket: {}", e), Error::CreateTapDevice(e) => write!(f, "failed to create tap device: {:?}", e), Error::CreateTimerFd(e) => write!(f, "failed to create timerfd: {}", e), Error::DetectImageType(e) => write!(f, "failed to detect disk image type: {:?}", e), Error::DeviceJail(e) => write!(f, "failed to jail device: {}", e), Error::DevicePivotRoot(e) => write!(f, "failed to pivot root device: {}", e), Error::Disk(e) => write!(f, "failed to load disk image: {}", e), Error::DiskImageLock(e) => write!(f, "failed to lock disk image: {:?}", e), Error::InvalidFdPath => write!(f, "failed parsing a /proc/self/fd/*"), Error::InvalidWaylandPath => { write!(f, "wayland socket path has no parent or file name") } Error::NetDeviceNew(e) => write!(f, "failed to set up virtio networking: {:?}", e), Error::NoVarEmpty => write!(f, "/var/empty doesn't exist, can't jail devices."), Error::OpenKernel(p, e) => write!(f, "failed to open kernel image {:?}: {}", p, e), Error::P9DeviceNew(e) => write!(f, "failed to create 9p device: {}", e), Error::PollContextAdd(e) => write!(f, "failed to add fd to poll context: {:?}", e), Error::PollContextDelete(e) => { write!(f, "failed to remove fd from poll context: {:?}", e) } Error::QcowDeviceCreate(e) => write!(f, "failed to read qcow formatted file {:?}", e), Error::ReadLowmemAvailable(e) => write!( f, "failed to read /sys/kernel/mm/chromeos-low_mem/available: {}", e ), Error::ReadLowmemMargin(e) => write!( f, "failed to read /sys/kernel/mm/chromeos-low_mem/margin: {}", e ), Error::RegisterBalloon(e) => write!(f, "error registering balloon device: {:?}", e), Error::RegisterBlock(e) => write!(f, "error registering block device: {:?}", e), Error::RegisterGpu(e) => write!(f, "error registering gpu device: {:?}", e), Error::RegisterNet(e) => write!(f, "error registering net device: {:?}", e), Error::RegisterP9(e) => write!(f, "error registering 9p device: {:?}", e), Error::RegisterRng(e) => write!(f, "error registering rng device: {:?}", e), Error::RegisterSignalHandler(e) => { write!(f, "error registering signal handler: {:?}", e) } Error::RegisterWayland(e) => write!(f, "error registering wayland device: {}", e), Error::ResetTimerFd(e) => write!(f, "failed to reset timerfd: {}", e), Error::RngDeviceNew(e) => write!(f, "failed to set up rng: {:?}", e), Error::SettingGidMap(e) => write!(f, "error setting GID map: {}", e), Error::SettingUidMap(e) => write!(f, "error setting UID map: {}", e), Error::SignalFd(e) => write!(f, "failed to read signal fd: {:?}", e), Error::SpawnVcpu(e) => write!(f, "failed to spawn VCPU thread: {:?}", e), Error::TimerFd(e) => write!(f, "failed to read timer fd: {:?}", e), Error::ValidateRawFd(e) => write!(f, "failed to validate raw fd: {:?}", e), Error::VhostNetDeviceNew(e) => write!(f, "failed to set up vhost networking: {:?}", e), Error::VhostVsockDeviceNew(e) => { write!(f, "failed to set up virtual socket device: {:?}", e) } Error::VirtioPciDev(e) => write!(f, "failed to create virtio pci dev: {}", e), Error::WaylandDeviceNew(e) => write!(f, "failed to create wayland device: {:?}", e), Error::LoadKernel(e) => write!(f, "failed to load kernel: {}", e), } } } impl std::error::Error for Error { fn description(&self) -> &str { "Some device failure" } } type Result = std::result::Result; fn create_base_minijail(root: &Path, seccomp_policy: &Path) -> Result { // All child jails run in a new user namespace without any users mapped, // they run as nobody unless otherwise configured. let mut j = Minijail::new().map_err(Error::DeviceJail)?; j.namespace_pids(); j.namespace_user(); j.namespace_user_disable_setgroups(); // Don't need any capabilities. j.use_caps(0); // Create a new mount namespace with an empty root FS. j.namespace_vfs(); j.enter_pivot_root(root).map_err(Error::DevicePivotRoot)?; // Run in an empty network namespace. j.namespace_net(); // Apply the block device seccomp policy. j.no_new_privs(); // Use TSYNC only for the side effect of it using SECCOMP_RET_TRAP, which will correctly kill // the entire device process if a worker thread commits a seccomp violation. j.set_seccomp_filter_tsync(); #[cfg(debug_assertions)] j.log_seccomp_filter_failures(); j.parse_seccomp_filters(seccomp_policy) .map_err(Error::DeviceJail)?; j.use_seccomp_filter(); // Don't do init setup. j.run_as_init(); Ok(j) } fn create_virtio_devs( cfg: Config, mem: &GuestMemory, _exit_evt: &EventFd, wayland_device_socket: UnixDatagram, balloon_device_socket: UnixDatagram, ) -> std::result::Result, Option)>, Box> { static DEFAULT_PIVOT_ROOT: &str = "/var/empty"; let mut devs = Vec::new(); // An empty directory for jailed device's pivot root. let empty_root_path = Path::new(DEFAULT_PIVOT_ROOT); if cfg.multiprocess && !empty_root_path.exists() { return Err(Box::new(Error::NoVarEmpty)); } for disk in &cfg.disks { // Special case '/proc/self/fd/*' paths. The FD is already open, just use it. let mut raw_image: File = if disk.path.parent() == Some(Path::new("/proc/self/fd")) { if !disk.path.is_file() { return Err(Box::new(Error::InvalidFdPath)); } let raw_fd = disk .path .file_name() .and_then(|fd_osstr| fd_osstr.to_str()) .and_then(|fd_str| fd_str.parse::().ok()) .ok_or(Error::InvalidFdPath)?; // Safe because we will validate |raw_fd|. unsafe { File::from_raw_fd(validate_raw_fd(raw_fd).map_err(Error::ValidateRawFd)?) } } else { OpenOptions::new() .read(true) .write(!disk.read_only) .open(&disk.path) .map_err(Error::Disk)? }; // Lock the disk image to prevent other crosvm instances from using it. let lock_op = if disk.read_only { FlockOperation::LockShared } else { FlockOperation::LockExclusive }; flock(&raw_image, lock_op, true).map_err(Error::DiskImageLock)?; let image_type = qcow::detect_image_type(&raw_image).map_err(Error::DetectImageType)?; let block_box: Box = match image_type { ImageType::Raw => { // Access as a raw block device. Box::new( devices::virtio::Block::new(raw_image, disk.read_only) .map_err(Error::BlockDeviceNew)?, ) } ImageType::Qcow2 => { // Valid qcow header present let qcow_image = QcowFile::from(raw_image).map_err(Error::QcowDeviceCreate)?; Box::new( devices::virtio::Block::new(qcow_image, disk.read_only) .map_err(Error::BlockDeviceNew)?, ) } }; let jail = if cfg.multiprocess { let policy_path: PathBuf = cfg.seccomp_policy_dir.join("block_device.policy"); Some(create_base_minijail(empty_root_path, &policy_path)?) } else { None }; devs.push(VirtioDeviceStub { dev: block_box, jail, }); } let rng_box = Box::new(devices::virtio::Rng::new().map_err(Error::RngDeviceNew)?); let rng_jail = if cfg.multiprocess { let policy_path: PathBuf = cfg.seccomp_policy_dir.join("rng_device.policy"); Some(create_base_minijail(empty_root_path, &policy_path)?) } else { None }; devs.push(VirtioDeviceStub { dev: rng_box, jail: rng_jail, }); let balloon_box = Box::new( devices::virtio::Balloon::new(balloon_device_socket).map_err(Error::BalloonDeviceNew)?, ); let balloon_jail = if cfg.multiprocess { let policy_path: PathBuf = cfg.seccomp_policy_dir.join("balloon_device.policy"); Some(create_base_minijail(empty_root_path, &policy_path)?) } else { None }; devs.push(VirtioDeviceStub { dev: balloon_box, jail: balloon_jail, }); // We checked above that if the IP is defined, then the netmask is, too. if let Some(tap_fd) = cfg.tap_fd { // Safe because we ensure that we get a unique handle to the fd. let tap = unsafe { Tap::from_raw_fd(validate_raw_fd(tap_fd).map_err(Error::ValidateRawFd)?) .map_err(Error::CreateTapDevice)? }; let net_box = Box::new(devices::virtio::Net::from(tap).map_err(Error::NetDeviceNew)?); let jail = if cfg.multiprocess { let policy_path: PathBuf = cfg.seccomp_policy_dir.join("net_device.policy"); Some(create_base_minijail(empty_root_path, &policy_path)?) } else { None }; devs.push(VirtioDeviceStub { dev: net_box, jail }); } else if let Some(host_ip) = cfg.host_ip { if let Some(netmask) = cfg.netmask { if let Some(mac_address) = cfg.mac_address { let net_box: Box = if cfg.vhost_net { Box::new( devices::virtio::vhost::Net::>::new( host_ip, netmask, mac_address, &mem, ) .map_err(Error::VhostNetDeviceNew)?, ) } else { Box::new( devices::virtio::Net::::new(host_ip, netmask, mac_address) .map_err(Error::NetDeviceNew)?, ) }; let jail = if cfg.multiprocess { let policy_path: PathBuf = if cfg.vhost_net { cfg.seccomp_policy_dir.join("vhost_net_device.policy") } else { cfg.seccomp_policy_dir.join("net_device.policy") }; Some(create_base_minijail(empty_root_path, &policy_path)?) } else { None }; devs.push(VirtioDeviceStub { dev: net_box, jail }); } } } #[cfg(feature = "gpu")] let mut resource_bridge_wl_socket: Option< devices::virtio::resource_bridge::ResourceRequestSocket, > = None; #[cfg(feature = "gpu")] { if cfg.gpu { if let Some(wayland_socket_path) = cfg.wayland_socket_path.as_ref() { let (wl_socket, gpu_socket) = devices::virtio::resource_bridge::pair().map_err(Error::CreateSocket)?; resource_bridge_wl_socket = Some(wl_socket); let jailed_wayland_path = Path::new("/wayland-0"); let gpu_box = Box::new(devices::virtio::Gpu::new( _exit_evt.try_clone().map_err(Error::CloneEventFd)?, Some(gpu_socket), if cfg.multiprocess { &jailed_wayland_path } else { wayland_socket_path.as_path() }, )); let jail = if cfg.multiprocess { let policy_path: PathBuf = cfg.seccomp_policy_dir.join("gpu_device.policy"); let mut jail = create_base_minijail(empty_root_path, &policy_path)?; // Create a tmpfs in the device's root directory so that we can bind mount the // dri directory into it. The size=67108864 is size=64*1024*1024 or size=64MB. jail.mount_with_data( Path::new("none"), Path::new("/"), "tmpfs", (libc::MS_NOSUID | libc::MS_NODEV | libc::MS_NOEXEC) as usize, "size=67108864", ) .unwrap(); // Device nodes required for DRM. let sys_dev_char_path = Path::new("/sys/dev/char"); jail.mount_bind(sys_dev_char_path, sys_dev_char_path, false) .unwrap(); let sys_devices_path = Path::new("/sys/devices"); jail.mount_bind(sys_devices_path, sys_devices_path, false) .unwrap(); let drm_dri_path = Path::new("/dev/dri"); jail.mount_bind(drm_dri_path, drm_dri_path, false).unwrap(); // Libraries that are required when mesa drivers are dynamically loaded. let lib_path = Path::new("/lib64"); jail.mount_bind(lib_path, lib_path, false).unwrap(); let usr_lib_path = Path::new("/usr/lib64"); jail.mount_bind(usr_lib_path, usr_lib_path, false).unwrap(); // Bind mount the wayland socket into jail's root. This is necessary since each // new wayland context must open() the socket. jail.mount_bind(wayland_socket_path.as_path(), jailed_wayland_path, true) .unwrap(); // Set the uid/gid for the jailed process, and give a basic id map. This // is required for the above bind mount to work. let crosvm_user_group = CStr::from_bytes_with_nul(b"crosvm\0").unwrap(); let crosvm_uid = match get_user_id(&crosvm_user_group) { Ok(u) => u, Err(e) => { warn!("falling back to current user id for gpu: {:?}", e); geteuid() } }; let crosvm_gid = match get_group_id(&crosvm_user_group) { Ok(u) => u, Err(e) => { warn!("falling back to current group id for gpu: {:?}", e); getegid() } }; jail.change_uid(crosvm_uid); jail.change_gid(crosvm_gid); jail.uidmap(&format!("{0} {0} 1", crosvm_uid)) .map_err(Error::SettingUidMap)?; jail.gidmap(&format!("{0} {0} 1", crosvm_gid)) .map_err(Error::SettingGidMap)?; Some(jail) } else { None }; devs.push(VirtioDeviceStub { dev: gpu_box, jail }); } } } if let Some(wayland_socket_path) = cfg.wayland_socket_path.as_ref() { let wayland_socket_dir = wayland_socket_path .parent() .ok_or(Error::InvalidWaylandPath)?; let wayland_socket_name = wayland_socket_path .file_name() .ok_or(Error::InvalidWaylandPath)?; let jailed_wayland_dir = Path::new("/wayland"); let jailed_wayland_path = jailed_wayland_dir.join(wayland_socket_name); #[cfg(not(feature = "gpu"))] let resource_bridge_wl_socket = None; let wl_box = Box::new( devices::virtio::Wl::new( if cfg.multiprocess { &jailed_wayland_path } else { wayland_socket_path.as_path() }, wayland_device_socket, resource_bridge_wl_socket, ) .map_err(Error::WaylandDeviceNew)?, ); let jail = if cfg.multiprocess { let policy_path: PathBuf = cfg.seccomp_policy_dir.join("wl_device.policy"); let mut jail = create_base_minijail(empty_root_path, &policy_path)?; // Create a tmpfs in the device's root directory so that we can bind mount the wayland // socket directory into it. The size=67108864 is size=64*1024*1024 or size=64MB. jail.mount_with_data( Path::new("none"), Path::new("/"), "tmpfs", (libc::MS_NOSUID | libc::MS_NODEV | libc::MS_NOEXEC) as usize, "size=67108864", ) .unwrap(); // Bind mount the wayland socket's directory into jail's root. This is necessary since // each new wayland context must open() the socket. If the wayland socket is ever // destroyed and remade in the same host directory, new connections will be possible // without restarting the wayland device. jail.mount_bind(wayland_socket_dir, jailed_wayland_dir, true) .unwrap(); // Set the uid/gid for the jailed process, and give a basic id map. This // is required for the above bind mount to work. let crosvm_user_group = CStr::from_bytes_with_nul(b"crosvm\0").unwrap(); let crosvm_uid = match get_user_id(&crosvm_user_group) { Ok(u) => u, Err(e) => { warn!("falling back to current user id for Wayland: {:?}", e); geteuid() } }; let crosvm_gid = match get_group_id(&crosvm_user_group) { Ok(u) => u, Err(e) => { warn!("falling back to current group id for Wayland: {:?}", e); getegid() } }; jail.change_uid(crosvm_uid); jail.change_gid(crosvm_gid); jail.uidmap(&format!("{0} {0} 1", crosvm_uid)) .map_err(Error::SettingUidMap)?; jail.gidmap(&format!("{0} {0} 1", crosvm_gid)) .map_err(Error::SettingGidMap)?; Some(jail) } else { None }; devs.push(VirtioDeviceStub { dev: wl_box, jail }); } if let Some(cid) = cfg.cid { let vsock_box = Box::new( devices::virtio::vhost::Vsock::new(cid, &mem).map_err(Error::VhostVsockDeviceNew)?, ); let jail = if cfg.multiprocess { let policy_path: PathBuf = cfg.seccomp_policy_dir.join("vhost_vsock_device.policy"); Some(create_base_minijail(empty_root_path, &policy_path)?) } else { None }; devs.push(VirtioDeviceStub { dev: vsock_box, jail, }); } let chronos_user_group = CStr::from_bytes_with_nul(b"chronos\0").unwrap(); let chronos_uid = match get_user_id(&chronos_user_group) { Ok(u) => u, Err(e) => { warn!("falling back to current user id for 9p: {:?}", e); geteuid() } }; let chronos_gid = match get_group_id(&chronos_user_group) { Ok(u) => u, Err(e) => { warn!("falling back to current group id for 9p: {:?}", e); getegid() } }; for &(ref src, ref tag) in &cfg.shared_dirs { let (jail, root) = if cfg.multiprocess { let policy_path: PathBuf = cfg.seccomp_policy_dir.join("9p_device.policy"); let mut jail = create_base_minijail(empty_root_path, &policy_path)?; // The shared directory becomes the root of the device's file system. let root = Path::new("/"); jail.mount_bind(&src, root, true).unwrap(); // Set the uid/gid for the jailed process, and give a basic id map. This // is required for the above bind mount to work. jail.change_uid(chronos_uid); jail.change_gid(chronos_gid); jail.uidmap(&format!("{0} {0} 1", chronos_uid)) .map_err(Error::SettingUidMap)?; jail.gidmap(&format!("{0} {0} 1", chronos_gid)) .map_err(Error::SettingGidMap)?; (Some(jail), root) } else { // There's no bind mount so we tell the server to treat the source directory as the // root. The double deref here converts |src| from a &PathBuf into a &Path. (None, &**src) }; let p9_box = Box::new(devices::virtio::P9::new(root, tag).map_err(Error::P9DeviceNew)?); devs.push(VirtioDeviceStub { dev: p9_box, jail }); } let mut pci_devices: Vec<(Box, Option)> = Vec::new(); for stub in devs { let pci_dev = Box::new(VirtioPciDevice::new((*mem).clone(), stub.dev).map_err(Error::VirtioPciDev)?); pci_devices.push((pci_dev, stub.jail)); } Ok(pci_devices) } fn setup_vcpu_signal_handler() -> Result<()> { unsafe { extern "C" fn handle_signal() {} // Our signal handler does nothing and is trivially async signal safe. register_signal_handler(SIGRTMIN() + 0, handle_signal) .map_err(Error::RegisterSignalHandler)?; } block_signal(SIGRTMIN() + 0).map_err(Error::BlockSignal)?; Ok(()) } fn run_vcpu( vcpu: Vcpu, cpu_id: u32, start_barrier: Arc, io_bus: devices::Bus, mmio_bus: devices::Bus, exit_evt: EventFd, kill_signaled: Arc, ) -> Result> { thread::Builder::new() .name(format!("crosvm_vcpu{}", cpu_id)) .spawn(move || { let mut sig_ok = true; match get_blocked_signals() { Ok(mut v) => { v.retain(|&x| x != SIGRTMIN() + 0); if let Err(e) = vcpu.set_signal_mask(&v) { error!( "Failed to set the KVM_SIGNAL_MASK for vcpu {} : {:?}", cpu_id, e ); sig_ok = false; } } Err(e) => { error!( "Failed to retrieve signal mask for vcpu {} : {:?}", cpu_id, e ); sig_ok = false; } }; start_barrier.wait(); if sig_ok { loop { match vcpu.run() { Ok(VcpuExit::IoIn { port, mut size }) => { let mut data = [0; 8]; if size > data.len() { error!("unsupported IoIn size of {} bytes", size); size = data.len(); } io_bus.read(port as u64, &mut data[..size]); if let Err(e) = vcpu.set_data(&data[..size]) { error!("failed to set return data for IoIn: {:?}", e); } } Ok(VcpuExit::IoOut { port, mut size, data, }) => { if size > data.len() { error!("unsupported IoOut size of {} bytes", size); size = data.len(); } io_bus.write(port as u64, &data[..size]); } Ok(VcpuExit::MmioRead { address, size }) => { let mut data = [0; 8]; mmio_bus.read(address, &mut data[..size]); // Setting data for mmio can not fail. let _ = vcpu.set_data(&data[..size]); } Ok(VcpuExit::MmioWrite { address, size, data, }) => { mmio_bus.write(address, &data[..size]); } Ok(VcpuExit::Hlt) => break, Ok(VcpuExit::Shutdown) => break, Ok(VcpuExit::SystemEvent(_, _)) => //TODO handle reboot and crash events { kill_signaled.store(true, Ordering::SeqCst) } Ok(r) => warn!("unexpected vcpu exit: {:?}", r), Err(e) => match e.errno() { libc::EAGAIN | libc::EINTR => {} _ => { error!("vcpu hit unknown error: {:?}", e); break; } }, } if kill_signaled.load(Ordering::SeqCst) { break; } // Try to clear the signal that we use to kick VCPU if it is // pending before attempting to handle pause requests. clear_signal(SIGRTMIN() + 0).expect("failed to clear pending signal"); } } exit_evt .write(1) .expect("failed to signal vcpu exit eventfd"); }) .map_err(Error::SpawnVcpu) } // Reads the contents of a file and converts them into a u64. fn file_to_u64>(path: P) -> io::Result { let mut file = File::open(path)?; let mut buf = [0u8; 32]; let count = file.read(&mut buf)?; let content = str::from_utf8(&buf[..count]).map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?; content .trim() .parse() .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)) } pub fn run_config(cfg: Config) -> Result<()> { if cfg.multiprocess { // Printing something to the syslog before entering minijail so that libc's syslogger has a // chance to open files necessary for its operation, like `/etc/localtime`. After jailing, // access to those files will not be possible. info!("crosvm entering multiprocess mode"); } // Masking signals is inherently dangerous, since this can persist across clones/execs. Do this // before any jailed devices have been spawned, so that we can catch any of them that fail very // quickly. let sigchld_fd = SignalFd::new(libc::SIGCHLD).map_err(Error::CreateSignalFd)?; let components = VmComponents { memory_mb: (cfg.memory.unwrap_or(256) << 20) as u64, vcpu_count: cfg.vcpu_count.unwrap_or(1), kernel_image: File::open(cfg.kernel_path.as_path()) .map_err(|e| Error::OpenKernel(cfg.kernel_path.clone(), e))?, extra_kernel_params: cfg.params.clone(), wayland_dmabuf: cfg.wayland_dmabuf, }; let mut control_sockets = Vec::new(); if let Some(ref path_string) = cfg.socket_path { let path = Path::new(path_string); let dgram = UnixDatagram::bind(path).map_err(Error::CreateSocket)?; control_sockets.push(UnlinkMsgSocket::::new( UnlinkUnixDatagram(dgram), )); }; let (wayland_host_socket, wayland_device_socket) = UnixDatagram::pair().map_err(Error::CreateSocket)?; control_sockets.push(UnlinkMsgSocket::::new( UnlinkUnixDatagram(wayland_host_socket), )); // Balloon gets a special socket so balloon requests can be forwarded from the main process. let (balloon_host_socket, balloon_device_socket) = UnixDatagram::pair().map_err(Error::CreateSocket)?; let linux = Arch::build_vm(components, |m, e| { create_virtio_devs(cfg, m, e, wayland_device_socket, balloon_device_socket) }) .map_err(Error::BuildingVm)?; run_control(linux, control_sockets, balloon_host_socket, sigchld_fd) } fn run_control( mut linux: RunnableLinuxVm, control_sockets: Vec>, balloon_host_socket: UnixDatagram, sigchld_fd: SignalFd, ) -> Result<()> { // Paths to get the currently available memory and the low memory threshold. const LOWMEM_MARGIN: &str = "/sys/kernel/mm/chromeos-low_mem/margin"; const LOWMEM_AVAILABLE: &str = "/sys/kernel/mm/chromeos-low_mem/available"; // The amount of additional memory to claim back from the VM whenever the system is // low on memory. const ONE_GB: u64 = (1 << 30); let max_balloon_memory = match linux.vm.get_memory().memory_size() { // If the VM has at least 1.5 GB, the balloon driver can consume all but the last 1 GB. n if n >= (ONE_GB / 2) * 3 => n - ONE_GB, // Otherwise, if the VM has at least 500MB the balloon driver will consume at most // half of it. n if n >= (ONE_GB / 2) => n / 2, // Otherwise, the VM is too small for us to take memory away from it. _ => 0, }; let mut current_balloon_memory: u64 = 0; let balloon_memory_increment: u64 = max_balloon_memory / 16; #[derive(PollToken)] enum Token { Exit, Stdin, ChildSignal, CheckAvailableMemory, LowMemory, LowmemTimer, VmControl { index: usize }, } let stdin_handle = stdin(); let stdin_lock = stdin_handle.lock(); stdin_lock .set_raw_mode() .expect("failed to set terminal raw mode"); let poll_ctx = PollContext::new().map_err(Error::CreatePollContext)?; poll_ctx .add(&linux.exit_evt, Token::Exit) .map_err(Error::PollContextAdd)?; if let Err(e) = poll_ctx.add(&stdin_handle, Token::Stdin) { warn!("failed to add stdin to poll context: {:?}", e); } poll_ctx .add(&sigchld_fd, Token::ChildSignal) .map_err(Error::PollContextAdd)?; for (index, socket) in control_sockets.iter().enumerate() { poll_ctx .add(socket.as_ref(), Token::VmControl { index }) .map_err(Error::PollContextAdd)?; } // Watch for low memory notifications and take memory back from the VM. let low_mem = File::open("/dev/chromeos-low-mem").ok(); if let Some(ref low_mem) = low_mem { poll_ctx .add(low_mem, Token::LowMemory) .map_err(Error::PollContextAdd)?; } else { warn!("Unable to open low mem indicator, maybe not a chrome os kernel"); } // Used to rate limit balloon requests. let mut lowmem_timer = TimerFd::new().map_err(Error::CreateTimerFd)?; poll_ctx .add(&lowmem_timer, Token::LowmemTimer) .map_err(Error::PollContextAdd)?; // Used to check whether it's ok to start giving memory back to the VM. let mut freemem_timer = TimerFd::new().map_err(Error::CreateTimerFd)?; poll_ctx .add(&freemem_timer, Token::CheckAvailableMemory) .map_err(Error::PollContextAdd)?; // Used to add jitter to timer values so that we don't have a thundering herd problem when // multiple VMs are running. let mut rng = thread_rng(); let lowmem_jitter_ms = Range::new(0, 200); let freemem_jitter_secs = Range::new(0, 12); let interval_jitter_secs = Range::new(0, 6); let mut vcpu_handles = Vec::with_capacity(linux.vcpus.len()); let vcpu_thread_barrier = Arc::new(Barrier::new(linux.vcpus.len() + 1)); let kill_signaled = Arc::new(AtomicBool::new(false)); setup_vcpu_signal_handler()?; for (cpu_id, vcpu) in linux.vcpus.into_iter().enumerate() { let handle = run_vcpu( vcpu, cpu_id as u32, vcpu_thread_barrier.clone(), linux.io_bus.clone(), linux.mmio_bus.clone(), linux.exit_evt.try_clone().map_err(Error::CloneEventFd)?, kill_signaled.clone(), )?; vcpu_handles.push(handle); } vcpu_thread_barrier.wait(); 'poll: loop { let events = { match poll_ctx.wait() { Ok(v) => v, Err(e) => { error!("failed to poll: {:?}", e); break; } } }; for event in events.iter_readable() { match event.token() { Token::Exit => { info!("vcpu requested shutdown"); break 'poll; } Token::Stdin => { let mut out = [0u8; 64]; match stdin_lock.read_raw(&mut out[..]) { Ok(0) => { // Zero-length read indicates EOF. Remove from pollables. let _ = poll_ctx.delete(&stdin_handle); } Err(e) => { warn!("error while reading stdin: {:?}", e); let _ = poll_ctx.delete(&stdin_handle); } Ok(count) => { linux .stdio_serial .lock() .queue_input_bytes(&out[..count]) .expect("failed to queue bytes into serial port"); } } } Token::ChildSignal => { // Print all available siginfo structs, then exit the loop. while let Some(siginfo) = sigchld_fd.read().map_err(Error::SignalFd)? { error!( "child {} died: signo {}, status {}, code {}", siginfo.ssi_pid, siginfo.ssi_signo, siginfo.ssi_status, siginfo.ssi_code ); } break 'poll; } Token::CheckAvailableMemory => { // Acknowledge the timer. freemem_timer.wait().map_err(Error::TimerFd)?; if current_balloon_memory == 0 { // Nothing to see here. if let Err(e) = freemem_timer.clear() { warn!("unable to clear available memory check timer: {}", e); } continue; } // Otherwise see if we can free up some memory. let margin = file_to_u64(LOWMEM_MARGIN).map_err(Error::ReadLowmemMargin)?; let available = file_to_u64(LOWMEM_AVAILABLE).map_err(Error::ReadLowmemAvailable)?; // `available` and `margin` are specified in MB while `balloon_memory_increment` is in // bytes. So to correctly compare them we need to turn the increment value into MB. if available >= margin + 2 * (balloon_memory_increment >> 20) { current_balloon_memory = if current_balloon_memory >= balloon_memory_increment { current_balloon_memory - balloon_memory_increment } else { 0 }; let mut buf = [0u8; mem::size_of::()]; LittleEndian::write_u64(&mut buf, current_balloon_memory); if let Err(e) = balloon_host_socket.send(&buf) { warn!("failed to send memory value to balloon device: {}", e); } } } Token::LowMemory => { if let Some(ref low_mem) = low_mem { let old_balloon_memory = current_balloon_memory; current_balloon_memory = min( current_balloon_memory + balloon_memory_increment, max_balloon_memory, ); if current_balloon_memory != old_balloon_memory { let mut buf = [0u8; mem::size_of::()]; LittleEndian::write_u64(&mut buf, current_balloon_memory); if let Err(e) = balloon_host_socket.send(&buf) { warn!("failed to send memory value to balloon device: {}", e); } } // Stop polling the lowmem device until the timer fires. poll_ctx.delete(low_mem).map_err(Error::PollContextDelete)?; // Add some jitter to the timer so that if there are multiple VMs running // they don't all start ballooning at exactly the same time. let lowmem_dur = Duration::from_millis(1000 + lowmem_jitter_ms.ind_sample(&mut rng)); lowmem_timer .reset(lowmem_dur, None) .map_err(Error::ResetTimerFd)?; // Also start a timer to check when we can start giving memory back. Do the // first check after a minute (with jitter) and subsequent checks after // every 30 seconds (with jitter). let freemem_dur = Duration::from_secs(60 + freemem_jitter_secs.ind_sample(&mut rng)); let freemem_int = Duration::from_secs(30 + interval_jitter_secs.ind_sample(&mut rng)); freemem_timer .reset(freemem_dur, Some(freemem_int)) .map_err(Error::ResetTimerFd)?; } } Token::LowmemTimer => { // Acknowledge the timer. lowmem_timer.wait().map_err(Error::TimerFd)?; if let Some(ref low_mem) = low_mem { // Start polling the lowmem device again. poll_ctx .add(low_mem, Token::LowMemory) .map_err(Error::PollContextAdd)?; } } Token::VmControl { index } => { if let Some(socket) = control_sockets.get(index) { match socket.recv() { Ok(request) => { let mut running = true; let response = request.execute( &mut linux.vm, &mut linux.resources, &mut running, &balloon_host_socket, ); if let Err(e) = socket.send(&response) { error!("failed to send VmResponse: {:?}", e); } if !running { info!("control socket requested exit"); break 'poll; } } Err(e) => error!("failed to recv VmRequest: {:?}", e), } } } } } for event in events.iter_hungup() { // It's possible more data is readable and buffered while the socket is hungup, so // don't delete the socket from the poll context until we're sure all the data is // read. if !event.readable() { match event.token() { Token::Exit => {} Token::Stdin => { let _ = poll_ctx.delete(&stdin_handle); } Token::ChildSignal => {} Token::CheckAvailableMemory => {} Token::LowMemory => {} Token::LowmemTimer => {} Token::VmControl { index } => { if let Some(socket) = control_sockets.get(index) { let _ = poll_ctx.delete(socket.as_ref()); } } } } } } // vcpu threads MUST see the kill signaled flag, otherwise they may // re-enter the VM. kill_signaled.store(true, Ordering::SeqCst); for handle in vcpu_handles { match handle.kill(SIGRTMIN() + 0) { Ok(_) => { if let Err(e) = handle.join() { error!("failed to join vcpu thread: {:?}", e); } } Err(e) => error!("failed to kill vcpu thread: {:?}", e), } } stdin_lock .set_canon_mode() .expect("failed to restore canonical mode for terminal"); Ok(()) }