// Copyright 2019 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use std::cmp::min; use std::fmt::{self, Debug, Display}; use std::fs::File; use std::io::{self, Read, Seek, SeekFrom, Write}; use libc::EINVAL; use remain::sorted; use sys_util::{ AsRawFds, FileAllocate, FileReadWriteAtVolatile, FileSetLen, FileSync, PunchHole, SeekHole, WriteZeroesAt, }; mod qcow; pub use qcow::{QcowFile, QCOW_MAGIC}; #[cfg(feature = "composite-disk")] mod composite; #[cfg(feature = "composite-disk")] use composite::{CompositeDiskFile, CDISK_MAGIC, CDISK_MAGIC_LEN}; #[sorted] #[derive(Debug)] pub enum Error { BlockDeviceNew(sys_util::Error), ConversionNotSupported, #[cfg(feature = "composite-disk")] CreateCompositeDisk(composite::Error), QcowError(qcow::Error), ReadingData(io::Error), ReadingHeader(io::Error), SeekingFile(io::Error), SettingFileSize(io::Error), UnknownType, WritingData(io::Error), } pub type Result = std::result::Result; /// A trait for getting the length of a disk image or raw block device. pub trait DiskGetLen { /// Get the current length of the disk in bytes. fn get_len(&self) -> io::Result; } impl DiskGetLen for File { fn get_len(&self) -> io::Result { let mut s = self; let orig_seek = s.seek(SeekFrom::Current(0))?; let end = s.seek(SeekFrom::End(0))? as u64; s.seek(SeekFrom::Start(orig_seek))?; Ok(end) } } /// The prerequisites necessary to support a block device. #[rustfmt::skip] // rustfmt won't wrap the long list of trait bounds. pub trait DiskFile: FileSetLen + DiskGetLen + FileSync + FileReadWriteAtVolatile + PunchHole + WriteZeroesAt + FileAllocate + Send + AsRawFds + Debug { } impl< D: FileSetLen + DiskGetLen + FileSync + PunchHole + FileReadWriteAtVolatile + WriteZeroesAt + FileAllocate + Send + AsRawFds + Debug, > DiskFile for D { } impl Display for Error { #[remain::check] fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use self::Error::*; #[sorted] match self { BlockDeviceNew(e) => write!(f, "failed to create block device: {}", e), ConversionNotSupported => write!(f, "requested file conversion not supported"), #[cfg(feature = "composite-disk")] CreateCompositeDisk(e) => write!(f, "failure in composite disk: {}", e), QcowError(e) => write!(f, "failure in qcow: {}", e), ReadingData(e) => write!(f, "failed to read data: {}", e), ReadingHeader(e) => write!(f, "failed to read header: {}", e), SeekingFile(e) => write!(f, "failed to seek file: {}", e), SettingFileSize(e) => write!(f, "failed to set file size: {}", e), UnknownType => write!(f, "unknown disk type"), WritingData(e) => write!(f, "failed to write data: {}", e), } } } /// The variants of image files on the host that can be used as virtual disks. #[derive(Debug, PartialEq, Eq)] pub enum ImageType { Raw, Qcow2, CompositeDisk, } fn convert_copy(reader: &mut R, writer: &mut W, offset: u64, size: u64) -> Result<()> where R: Read + Seek, W: Write + Seek, { const CHUNK_SIZE: usize = 65536; let mut buf = [0; CHUNK_SIZE]; let mut read_count = 0; reader .seek(SeekFrom::Start(offset)) .map_err(Error::SeekingFile)?; writer .seek(SeekFrom::Start(offset)) .map_err(Error::SeekingFile)?; loop { let this_count = min(CHUNK_SIZE as u64, size - read_count) as usize; let nread = reader .read(&mut buf[..this_count]) .map_err(Error::ReadingData)?; writer.write(&buf[..nread]).map_err(Error::WritingData)?; read_count += nread as u64; if nread == 0 || read_count == size { break; } } Ok(()) } fn convert_reader_writer(reader: &mut R, writer: &mut W, size: u64) -> Result<()> where R: Read + Seek + SeekHole, W: Write + Seek, { let mut offset = 0; while offset < size { // Find the next range of data. let next_data = match reader.seek_data(offset).map_err(Error::SeekingFile)? { Some(o) => o, None => { // No more data in the file. break; } }; let next_hole = match reader.seek_hole(next_data).map_err(Error::SeekingFile)? { Some(o) => o, None => { // This should not happen - there should always be at least one hole // after any data. return Err(Error::SeekingFile(io::Error::from_raw_os_error(EINVAL))); } }; let count = next_hole - next_data; convert_copy(reader, writer, next_data, count)?; offset = next_hole; } Ok(()) } fn convert_reader(reader: &mut R, dst_file: File, dst_type: ImageType) -> Result<()> where R: Read + Seek + SeekHole, { let src_size = reader.seek(SeekFrom::End(0)).map_err(Error::SeekingFile)?; reader .seek(SeekFrom::Start(0)) .map_err(Error::SeekingFile)?; // Ensure the destination file is empty before writing to it. dst_file.set_len(0).map_err(Error::SettingFileSize)?; match dst_type { ImageType::Qcow2 => { let mut dst_writer = QcowFile::new(dst_file, src_size).map_err(Error::QcowError)?; convert_reader_writer(reader, &mut dst_writer, src_size) } ImageType::Raw => { let mut dst_writer = dst_file; // Set the length of the destination file to convert it into a sparse file // of the desired size. dst_writer .set_len(src_size) .map_err(Error::SettingFileSize)?; convert_reader_writer(reader, &mut dst_writer, src_size) } _ => Err(Error::ConversionNotSupported), } } /// Copy the contents of a disk image in `src_file` into `dst_file`. /// The type of `src_file` is automatically detected, and the output file type is /// determined by `dst_type`. pub fn convert(src_file: File, dst_file: File, dst_type: ImageType) -> Result<()> { let src_type = detect_image_type(&src_file)?; match src_type { ImageType::Qcow2 => { let mut src_reader = QcowFile::from(src_file).map_err(Error::QcowError)?; convert_reader(&mut src_reader, dst_file, dst_type) } ImageType::Raw => { // src_file is a raw file. let mut src_reader = src_file; convert_reader(&mut src_reader, dst_file, dst_type) } // TODO(schuffelen): Implement Read + Write + SeekHole for CompositeDiskFile _ => Err(Error::ConversionNotSupported), } } /// Detect the type of an image file by checking for a valid qcow2 header. pub fn detect_image_type(file: &File) -> Result { let mut f = file; let orig_seek = f.seek(SeekFrom::Current(0)).map_err(Error::SeekingFile)?; f.seek(SeekFrom::Start(0)).map_err(Error::SeekingFile)?; let mut magic = [0u8; 4]; f.read_exact(&mut magic).map_err(Error::ReadingHeader)?; let magic = u32::from_be_bytes(magic); #[cfg(feature = "composite-disk")] { f.seek(SeekFrom::Start(0)).map_err(Error::SeekingFile)?; let mut cdisk_magic = [0u8; CDISK_MAGIC_LEN]; f.read_exact(&mut cdisk_magic[..]) .map_err(Error::ReadingHeader)?; if cdisk_magic == CDISK_MAGIC.as_bytes() { f.seek(SeekFrom::Start(orig_seek)) .map_err(Error::SeekingFile)?; return Ok(ImageType::CompositeDisk); } } let image_type = if magic == QCOW_MAGIC { ImageType::Qcow2 } else { ImageType::Raw }; f.seek(SeekFrom::Start(orig_seek)) .map_err(Error::SeekingFile)?; Ok(image_type) } /// Inspect the image file type and create an appropriate disk file to match it. pub fn create_disk_file(raw_image: File) -> Result> { let image_type = detect_image_type(&raw_image)?; Ok(match image_type { ImageType::Raw => Box::new(raw_image) as Box, ImageType::Qcow2 => { Box::new(QcowFile::from(raw_image).map_err(Error::QcowError)?) as Box } #[cfg(feature = "composite-disk")] ImageType::CompositeDisk => { // Valid composite disk header present Box::new(CompositeDiskFile::from_file(raw_image).map_err(Error::CreateCompositeDisk)?) as Box } #[cfg(not(feature = "composite-disk"))] ImageType::CompositeDisk => return Err(Error::UnknownType), }) }