// Copyright 2017 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use std::collections::VecDeque; use std::io::{self, Write}; use std::os::unix::io::RawFd; use std::sync::atomic::{AtomicU8, Ordering}; use std::sync::mpsc::{channel, Receiver, TryRecvError}; use std::sync::Arc; use std::thread::{self}; use sys_util::{error, EventFd, Result}; use crate::{BusDevice, SerialDevice}; const LOOP_SIZE: usize = 0x40; const DATA: u8 = 0; const IER: u8 = 1; const IIR: u8 = 2; const LCR: u8 = 3; const MCR: u8 = 4; const LSR: u8 = 5; const MSR: u8 = 6; const SCR: u8 = 7; const DLAB_LOW: u8 = 0; const DLAB_HIGH: u8 = 1; const IER_RECV_BIT: u8 = 0x1; const IER_THR_BIT: u8 = 0x2; const IER_FIFO_BITS: u8 = 0x0f; const IIR_FIFO_BITS: u8 = 0xc0; const IIR_NONE_BIT: u8 = 0x1; const IIR_THR_BIT: u8 = 0x2; const IIR_RECV_BIT: u8 = 0x4; const LSR_DATA_BIT: u8 = 0x1; const LSR_EMPTY_BIT: u8 = 0x20; const LSR_IDLE_BIT: u8 = 0x40; const MCR_DTR_BIT: u8 = 0x01; // Data Terminal Ready const MCR_RTS_BIT: u8 = 0x02; // Request to Send const MCR_OUT1_BIT: u8 = 0x04; const MCR_OUT2_BIT: u8 = 0x08; const MCR_LOOP_BIT: u8 = 0x10; const MSR_CTS_BIT: u8 = 0x10; // Clear to Send const MSR_DSR_BIT: u8 = 0x20; // Data Set Ready const MSR_RI_BIT: u8 = 0x40; // Ring Indicator const MSR_DCD_BIT: u8 = 0x80; // Data Carrier Detect const DEFAULT_INTERRUPT_IDENTIFICATION: u8 = IIR_NONE_BIT; // no pending interrupt const DEFAULT_LINE_STATUS: u8 = LSR_EMPTY_BIT | LSR_IDLE_BIT; // THR empty and line is idle const DEFAULT_LINE_CONTROL: u8 = 0x3; // 8-bits per character const DEFAULT_MODEM_CONTROL: u8 = MCR_OUT2_BIT; const DEFAULT_MODEM_STATUS: u8 = MSR_DSR_BIT | MSR_CTS_BIT | MSR_DCD_BIT; const DEFAULT_BAUD_DIVISOR: u16 = 12; // 9600 bps /// Emulates serial COM ports commonly seen on x86 I/O ports 0x3f8/0x2f8/0x3e8/0x2e8. /// /// This can optionally write the guest's output to a Write trait object. To send input to the /// guest, use `queue_input_bytes` directly, or give a Read trait object which will be used queue /// bytes when `used_command` is called. pub struct Serial { // Serial port registers interrupt_enable: Arc, interrupt_identification: u8, interrupt_evt: EventFd, line_control: u8, line_status: u8, modem_control: u8, modem_status: u8, scratch: u8, baud_divisor: u16, // Host input/output in_buffer: VecDeque, in_channel: Option>, input: Option>, out: Option>, } impl SerialDevice for Serial { fn new( interrupt_evt: EventFd, input: Option>, out: Option>, _keep_fds: Vec, ) -> Serial { Serial { interrupt_enable: Default::default(), interrupt_identification: DEFAULT_INTERRUPT_IDENTIFICATION, interrupt_evt, line_control: DEFAULT_LINE_CONTROL, line_status: DEFAULT_LINE_STATUS, modem_control: DEFAULT_MODEM_CONTROL, modem_status: DEFAULT_MODEM_STATUS, scratch: 0, baud_divisor: DEFAULT_BAUD_DIVISOR, in_buffer: Default::default(), in_channel: None, input, out, } } } impl Serial { /// Queues raw bytes for the guest to read and signals the interrupt if the line status would /// change. These bytes will be read by the guest before any bytes from the input stream that /// have not already been queued. pub fn queue_input_bytes(&mut self, c: &[u8]) -> Result<()> { if !c.is_empty() && !self.is_loop() { self.in_buffer.extend(c); self.set_data_bit(); self.trigger_recv_interrupt()?; } Ok(()) } fn spawn_input_thread(&mut self) { let mut rx = match self.input.take() { Some(input) => input, None => return, }; let (send_channel, recv_channel) = channel(); // The interrupt enable and interrupt event are used to trigger the guest serial driver to // read the serial device, which will give the VCPU threads time to queue input bytes from // the input thread's buffer, changing the serial device state accordingly. let interrupt_enable = self.interrupt_enable.clone(); let interrupt_evt = match self.interrupt_evt.try_clone() { Ok(e) => e, Err(e) => { error!("failed to clone interrupt eventfd: {}", e); return; } }; // The input thread runs in detached mode and will exit when channel is disconnected because // the serial device has been dropped. Initial versions of this kept a `JoinHandle` and had // the drop implementation of serial join on this thread, but the input thread can block // indefinitely depending on the `Box` implementation. let res = thread::Builder::new() .name(format!("{} input thread", self.debug_label())) .spawn(move || { let mut rx_buf = [0u8; 1]; loop { match rx.read(&mut rx_buf) { Ok(0) => break, // Assume the stream of input has ended. Ok(_) => { if send_channel.send(rx_buf[0]).is_err() { // The receiver has disconnected. break; } if (interrupt_enable.load(Ordering::SeqCst) & IER_RECV_BIT) != 0 { interrupt_evt.write(1).unwrap(); } } Err(e) => { // Being interrupted is not an error, but everything else is. if e.kind() != io::ErrorKind::Interrupted { error!( "failed to read for bytes to queue into serial device: {}", e ); break; } } } } }); if let Err(e) = res { error!("failed to spawn input thread: {}", e); return; } self.in_channel = Some(recv_channel); } fn handle_input_thread(&mut self) { if self.input.is_some() { self.spawn_input_thread(); } loop { let in_channel = match self.in_channel.as_ref() { Some(v) => v, None => return, }; match in_channel.try_recv() { Ok(byte) => { self.queue_input_bytes(&[byte]).unwrap(); } Err(TryRecvError::Empty) => break, Err(TryRecvError::Disconnected) => { self.in_channel = None; return; } } } } /// Gets the interrupt eventfd used to interrupt the driver when it needs to respond to this /// device. pub fn interrupt_eventfd(&self) -> &EventFd { &self.interrupt_evt } fn is_dlab_set(&self) -> bool { (self.line_control & 0x80) != 0 } fn is_recv_intr_enabled(&self) -> bool { (self.interrupt_enable.load(Ordering::SeqCst) & IER_RECV_BIT) != 0 } fn is_thr_intr_enabled(&self) -> bool { (self.interrupt_enable.load(Ordering::SeqCst) & IER_THR_BIT) != 0 } fn is_loop(&self) -> bool { (self.modem_control & MCR_LOOP_BIT) != 0 } fn add_intr_bit(&mut self, bit: u8) { self.interrupt_identification &= !IIR_NONE_BIT; self.interrupt_identification |= bit; } fn del_intr_bit(&mut self, bit: u8) { self.interrupt_identification &= !bit; if self.interrupt_identification == 0x0 { self.interrupt_identification = IIR_NONE_BIT; } } fn trigger_thr_empty(&mut self) -> Result<()> { if self.is_thr_intr_enabled() { self.add_intr_bit(IIR_THR_BIT); self.trigger_interrupt()? } Ok(()) } fn trigger_recv_interrupt(&mut self) -> Result<()> { if self.is_recv_intr_enabled() { // Only bother triggering the interrupt if the identification bit wasn't set or // acknowledged. if self.interrupt_identification & IIR_RECV_BIT == 0 { self.add_intr_bit(IIR_RECV_BIT); self.trigger_interrupt()? } } Ok(()) } fn trigger_interrupt(&mut self) -> Result<()> { self.interrupt_evt.write(1) } fn set_data_bit(&mut self) { self.line_status |= LSR_DATA_BIT; } fn iir_reset(&mut self) { self.interrupt_identification = DEFAULT_INTERRUPT_IDENTIFICATION; } fn handle_write(&mut self, offset: u8, v: u8) -> Result<()> { match offset as u8 { DLAB_LOW if self.is_dlab_set() => { self.baud_divisor = (self.baud_divisor & 0xff00) | v as u16 } DLAB_HIGH if self.is_dlab_set() => { self.baud_divisor = (self.baud_divisor & 0x00ff) | ((v as u16) << 8) } DATA => { if self.is_loop() { if self.in_buffer.len() < LOOP_SIZE { self.in_buffer.push_back(v); self.set_data_bit(); self.trigger_recv_interrupt()?; } } else { if let Some(out) = self.out.as_mut() { out.write_all(&[v])?; out.flush()?; } self.trigger_thr_empty()?; } } IER => self .interrupt_enable .store(v & IER_FIFO_BITS, Ordering::SeqCst), LCR => self.line_control = v, MCR => self.modem_control = v, SCR => self.scratch = v, _ => {} } Ok(()) } } impl BusDevice for Serial { fn debug_label(&self) -> String { "serial".to_owned() } fn write(&mut self, offset: u64, data: &[u8]) { if data.len() != 1 { return; } if let Err(e) = self.handle_write(offset as u8, data[0]) { error!("serial failed write: {}", e); } } fn read(&mut self, offset: u64, data: &mut [u8]) { if data.len() != 1 { return; } self.handle_input_thread(); data[0] = match offset as u8 { DLAB_LOW if self.is_dlab_set() => self.baud_divisor as u8, DLAB_HIGH if self.is_dlab_set() => (self.baud_divisor >> 8) as u8, DATA => { self.del_intr_bit(IIR_RECV_BIT); if self.in_buffer.len() <= 1 { self.line_status &= !LSR_DATA_BIT; } self.in_buffer.pop_front().unwrap_or_default() } IER => self.interrupt_enable.load(Ordering::SeqCst), IIR => { let v = self.interrupt_identification | IIR_FIFO_BITS; self.iir_reset(); v } LCR => self.line_control, MCR => self.modem_control, LSR => self.line_status, MSR => { if self.is_loop() { let mut msr = self.modem_status & !(MSR_DSR_BIT | MSR_CTS_BIT | MSR_RI_BIT | MSR_DCD_BIT); if self.modem_control & MCR_DTR_BIT != 0 { msr |= MSR_DSR_BIT; } if self.modem_control & MCR_RTS_BIT != 0 { msr |= MSR_CTS_BIT; } if self.modem_control & MCR_OUT1_BIT != 0 { msr |= MSR_RI_BIT; } if self.modem_control & MCR_OUT2_BIT != 0 { msr |= MSR_DCD_BIT; } msr } else { self.modem_status } } SCR => self.scratch, _ => 0, }; } } #[cfg(test)] mod tests { use super::*; use std::io; use std::sync::Arc; use sync::Mutex; #[derive(Clone)] struct SharedBuffer { buf: Arc>>, } impl SharedBuffer { fn new() -> SharedBuffer { SharedBuffer { buf: Arc::new(Mutex::new(Vec::new())), } } } impl io::Write for SharedBuffer { fn write(&mut self, buf: &[u8]) -> io::Result { self.buf.lock().write(buf) } fn flush(&mut self) -> io::Result<()> { self.buf.lock().flush() } } #[test] fn serial_output() { let intr_evt = EventFd::new().unwrap(); let serial_out = SharedBuffer::new(); let mut serial = Serial::new( intr_evt, None, Some(Box::new(serial_out.clone())), Vec::new(), ); serial.write(DATA as u64, &['a' as u8]); serial.write(DATA as u64, &['b' as u8]); serial.write(DATA as u64, &['c' as u8]); assert_eq!( serial_out.buf.lock().as_slice(), &['a' as u8, 'b' as u8, 'c' as u8] ); } #[test] fn serial_input() { let intr_evt = EventFd::new().unwrap(); let serial_out = SharedBuffer::new(); let mut serial = Serial::new( intr_evt.try_clone().unwrap(), None, Some(Box::new(serial_out.clone())), Vec::new(), ); serial.write(IER as u64, &[IER_RECV_BIT]); serial .queue_input_bytes(&['a' as u8, 'b' as u8, 'c' as u8]) .unwrap(); assert_eq!(intr_evt.read(), Ok(1)); let mut data = [0u8; 1]; serial.read(DATA as u64, &mut data[..]); assert_eq!(data[0], 'a' as u8); serial.read(DATA as u64, &mut data[..]); assert_eq!(data[0], 'b' as u8); serial.read(DATA as u64, &mut data[..]); assert_eq!(data[0], 'c' as u8); } }