// Copyright 2018 The Chromium OS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use std; use std::error::Error; use std::fmt::{self, Display}; use std::io::Write; use std::os::unix::io::RawFd; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::Arc; use std::thread; use std::time::Instant; use audio_streams::{ capture::{CaptureBuffer, CaptureBufferStream}, PlaybackBuffer, PlaybackBufferStream, StreamControl, StreamSource, }; use data_model::{VolatileMemory, VolatileSlice}; use sync::Mutex; use sys_util::{ self, error, set_rt_prio_limit, set_rt_round_robin, warn, EventFd, GuestAddress, GuestMemory, }; use crate::pci::ac97_mixer::Ac97Mixer; use crate::pci::ac97_regs::*; const DEVICE_SAMPLE_RATE: usize = 48000; // Bus Master registers. Keeps the state of the bus master register values. Used to share the state // between the main and audio threads. struct Ac97BusMasterRegs { pi_regs: Ac97FunctionRegs, // Input po_regs: Ac97FunctionRegs, // Output po_pointer_update_time: Instant, // Time the picb and civ regs were last updated. mc_regs: Ac97FunctionRegs, // Microphone glob_cnt: u32, glob_sta: u32, // IRQ event - driven by the glob_sta register. irq_evt: Option, } impl Ac97BusMasterRegs { fn new() -> Ac97BusMasterRegs { Ac97BusMasterRegs { pi_regs: Ac97FunctionRegs::new(), po_regs: Ac97FunctionRegs::new(), po_pointer_update_time: Instant::now(), mc_regs: Ac97FunctionRegs::new(), glob_cnt: 0, glob_sta: GLOB_STA_RESET_VAL, irq_evt: None, } } fn func_regs(&self, func: Ac97Function) -> &Ac97FunctionRegs { match func { Ac97Function::Input => &self.pi_regs, Ac97Function::Output => &self.po_regs, Ac97Function::Microphone => &self.mc_regs, } } fn func_regs_mut(&mut self, func: Ac97Function) -> &mut Ac97FunctionRegs { match func { Ac97Function::Input => &mut self.pi_regs, Ac97Function::Output => &mut self.po_regs, Ac97Function::Microphone => &mut self.mc_regs, } } } // Internal error type used for reporting errors from guest memory reading. #[derive(Debug)] enum GuestMemoryError { // Failure getting the address of the audio buffer. ReadingGuestBufferAddress(sys_util::GuestMemoryError), // Failure reading samples from guest memory. ReadingGuestSamples(data_model::VolatileMemoryError), } impl std::error::Error for GuestMemoryError {} impl Display for GuestMemoryError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use self::GuestMemoryError::*; match self { ReadingGuestBufferAddress(e) => { write!(f, "Failed to get the address of the audio buffer: {}.", e) } ReadingGuestSamples(e) => write!(f, "Failed to read samples from guest memory: {}.", e), } } } impl From for PlaybackError { fn from(err: GuestMemoryError) -> Self { PlaybackError::ReadingGuestError(err) } } impl From for CaptureError { fn from(err: GuestMemoryError) -> Self { CaptureError::ReadingGuestError(err) } } type GuestMemoryResult = std::result::Result; // Internal error type used for reporting errors from the audio playback thread. #[derive(Debug)] enum PlaybackError { // Failure to read guest memory. ReadingGuestError(GuestMemoryError), // Failure to get an buffer from the stream. StreamError(Box), // Failure writing to the audio output. WritingOutput(std::io::Error), } impl std::error::Error for PlaybackError {} impl Display for PlaybackError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use self::PlaybackError::*; match self { ReadingGuestError(e) => write!(f, "Failed to read guest memory: {}.", e), StreamError(e) => write!(f, "Failed to get a buffer from the stream: {}", e), WritingOutput(e) => write!(f, "Failed to write audio output: {}.", e), } } } type PlaybackResult = std::result::Result; // Internal error type used for reporting errors from the audio capture thread. #[derive(Debug)] enum CaptureError { // Failure to read guest memory. ReadingGuestError(GuestMemoryError), // Failure to get an buffer from the stream. StreamError(Box), } impl std::error::Error for CaptureError {} impl Display for CaptureError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use self::CaptureError::*; match self { ReadingGuestError(e) => write!(f, "Failed to read guest memory: {}.", e), StreamError(e) => write!(f, "Failed to get a buffer from the stream: {}", e), } } } type CaptureResult = std::result::Result; // Audio thread book-keeping data struct AudioThreadInfo { thread: Option>, thread_run: Arc, stream_control: Option>, } impl AudioThreadInfo { fn new() -> Self { Self { thread: None, thread_run: Arc::new(AtomicBool::new(false)), stream_control: None, } } } /// `Ac97BusMaster` emulates the bus master portion of AC97. It exposes a register read/write /// interface compliant with the ICH bus master. pub struct Ac97BusMaster { // Keep guest memory as each function will use it for buffer descriptors. mem: GuestMemory, regs: Arc>, acc_sema: u8, // Bookkeeping info for playback and capture stream. po_info: AudioThreadInfo, pi_info: AudioThreadInfo, // Audio server used to create playback or capture streams. audio_server: Box, // Thread for hadlind IRQ resample events from the guest. irq_resample_thread: Option>, } impl Ac97BusMaster { /// Creates an Ac97BusMaster` object that plays audio from `mem` to streams provided by /// `audio_server`. pub fn new(mem: GuestMemory, audio_server: Box) -> Self { Ac97BusMaster { mem, regs: Arc::new(Mutex::new(Ac97BusMasterRegs::new())), acc_sema: 0, po_info: AudioThreadInfo::new(), pi_info: AudioThreadInfo::new(), audio_server, irq_resample_thread: None, } } /// Returns any file descriptors that need to be kept open when entering a jail. pub fn keep_fds(&self) -> Option> { self.audio_server.keep_fds() } /// Provides the events needed to raise interrupts in the guest. pub fn set_irq_event_fd(&mut self, irq_evt: EventFd, irq_resample_evt: EventFd) { let thread_regs = self.regs.clone(); self.regs.lock().irq_evt = Some(irq_evt); self.irq_resample_thread = Some(thread::spawn(move || { loop { if let Err(e) = irq_resample_evt.read() { error!( "Failed to read the irq event from the resample thread: {}.", e, ); break; } { // Scope for the lock on thread_regs. let regs = thread_regs.lock(); // Check output irq let po_int_mask = regs.func_regs(Ac97Function::Output).int_mask(); if regs.func_regs(Ac97Function::Output).sr & po_int_mask != 0 { if let Some(irq_evt) = regs.irq_evt.as_ref() { if let Err(e) = irq_evt.write(1) { error!("Failed to set the irq from the resample thread: {}.", e); break; } } } // Check input irq let pi_int_mask = regs.func_regs(Ac97Function::Input).int_mask(); if regs.func_regs(Ac97Function::Input).sr & pi_int_mask != 0 { if let Some(irq_evt) = regs.irq_evt.as_ref() { if let Err(e) = irq_evt.write(1) { error!("Failed to set the irq from the resample thread: {}.", e); break; } } } } } })); } /// Called when `mixer` has been changed and the new values should be applied to currently /// active streams. pub fn update_mixer_settings(&mut self, mixer: &Ac97Mixer) { if let Some(control) = self.po_info.stream_control.as_mut() { // The audio server only supports one volume, not separate left and right. let (muted, left_volume, _right_volume) = mixer.get_master_volume(); control.set_volume(left_volume); control.set_mute(muted); } } /// Checks if the bus master is in the cold reset state. pub fn is_cold_reset(&self) -> bool { self.regs.lock().glob_cnt & GLOB_CNT_COLD_RESET == 0 } /// Reads a byte from the given `offset`. pub fn readb(&mut self, offset: u64) -> u8 { fn readb_func_regs(func_regs: &Ac97FunctionRegs, offset: u64) -> u8 { match offset { CIV_OFFSET => func_regs.civ, LVI_OFFSET => func_regs.lvi, SR_OFFSET => func_regs.sr as u8, PIV_OFFSET => func_regs.piv, CR_OFFSET => func_regs.cr, _ => 0, } } let regs = self.regs.lock(); match offset { PI_BASE_00..=PI_CR_0B => readb_func_regs(®s.pi_regs, offset - PI_BASE_00), PO_BASE_10..=PO_CR_1B => readb_func_regs(®s.po_regs, offset - PO_BASE_10), MC_BASE_20..=MC_CR_2B => readb_func_regs(®s.mc_regs, offset - MC_BASE_20), ACC_SEMA_34 => self.acc_sema, _ => 0, } } /// Reads a word from the given `offset`. pub fn readw(&mut self, offset: u64) -> u16 { let regs = self.regs.lock(); match offset { PI_SR_06 => regs.pi_regs.sr, PI_PICB_08 => regs.pi_regs.picb, PO_SR_16 => regs.po_regs.sr, PO_PICB_18 => { // PO PICB if !self.po_info.thread_run.load(Ordering::Relaxed) { // Not running, no need to estimate what has been consumed. regs.po_regs.picb } else { // Estimate how many samples have been played since the last audio callback. let num_channels = 2; let micros = regs.po_pointer_update_time.elapsed().subsec_micros(); // Round down to the next 10 millisecond boundary. The linux driver often // assumes that two rapid reads from picb will return the same value. let millis = micros / 1000 / 10 * 10; let frames_consumed = DEVICE_SAMPLE_RATE as u64 * u64::from(millis) / 1000; regs.po_regs .picb .saturating_sub((num_channels * frames_consumed) as u16) } } MC_SR_26 => regs.mc_regs.sr, MC_PICB_28 => regs.mc_regs.picb, _ => 0, } } /// Reads a 32-bit word from the given `offset`. pub fn readl(&mut self, offset: u64) -> u32 { let regs = self.regs.lock(); match offset { PI_BDBAR_00 => regs.pi_regs.bdbar, PI_CIV_04 => regs.pi_regs.atomic_status_regs(), PO_BDBAR_10 => regs.po_regs.bdbar, PO_CIV_14 => regs.po_regs.atomic_status_regs(), MC_BDBAR_20 => regs.mc_regs.bdbar, MC_CIV_24 => regs.mc_regs.atomic_status_regs(), GLOB_CNT_2C => regs.glob_cnt, GLOB_STA_30 => regs.glob_sta, _ => 0, } } /// Writes the byte `val` to the register specified by `offset`. pub fn writeb(&mut self, offset: u64, val: u8, mixer: &Ac97Mixer) { // Only process writes to the control register when cold reset is set. if self.is_cold_reset() { return; } match offset { PI_CIV_04 => (), // RO PI_LVI_05 => self.set_lvi(Ac97Function::Input, val), PI_SR_06 => self.set_sr(Ac97Function::Input, u16::from(val)), PI_PIV_0A => (), // RO PI_CR_0B => self.set_cr(Ac97Function::Input, val, mixer), PO_CIV_14 => (), // RO PO_LVI_15 => self.set_lvi(Ac97Function::Output, val), PO_SR_16 => self.set_sr(Ac97Function::Output, u16::from(val)), PO_PIV_1A => (), // RO PO_CR_1B => self.set_cr(Ac97Function::Output, val, mixer), MC_CIV_24 => (), // RO MC_LVI_25 => self.set_lvi(Ac97Function::Microphone, val), MC_PIV_2A => (), // RO MC_CR_2B => self.set_cr(Ac97Function::Microphone, val, mixer), ACC_SEMA_34 => self.acc_sema = val, o => warn!("write byte to 0x{:x}", o), } } /// Writes the word `val` to the register specified by `offset`. pub fn writew(&mut self, offset: u64, val: u16) { // Only process writes to the control register when cold reset is set. if self.is_cold_reset() { return; } match offset { PI_SR_06 => self.set_sr(Ac97Function::Input, val), PI_PICB_08 => (), // RO PO_SR_16 => self.set_sr(Ac97Function::Output, val), PO_PICB_18 => (), // RO MC_SR_26 => self.set_sr(Ac97Function::Microphone, val), MC_PICB_28 => (), // RO o => warn!("write word to 0x{:x}", o), } } /// Writes the 32-bit `val` to the register specified by `offset`. pub fn writel(&mut self, offset: u64, val: u32) { // Only process writes to the control register when cold reset is set. if self.is_cold_reset() && offset != 0x2c { return; } match offset { PI_BDBAR_00 => self.set_bdbar(Ac97Function::Input, val), PO_BDBAR_10 => self.set_bdbar(Ac97Function::Output, val), MC_BDBAR_20 => self.set_bdbar(Ac97Function::Microphone, val), GLOB_CNT_2C => self.set_glob_cnt(val), GLOB_STA_30 => (), // RO o => warn!("write long to 0x{:x}", o), } } fn set_bdbar(&mut self, func: Ac97Function, val: u32) { self.regs.lock().func_regs_mut(func).bdbar = val & !0x07; } fn set_lvi(&mut self, func: Ac97Function, val: u8) { let mut regs = self.regs.lock(); let func_regs = regs.func_regs_mut(func); func_regs.lvi = val % 32; // LVI wraps at 32. // If running and stalled waiting for more valid buffers, restart by clearing the "DMA // stopped" bit. if func_regs.cr & CR_RPBM == CR_RPBM && func_regs.sr & SR_DCH == SR_DCH && func_regs.civ != func_regs.lvi { func_regs.sr &= !SR_DCH; } } fn set_sr(&mut self, func: Ac97Function, val: u16) { let mut sr = self.regs.lock().func_regs(func).sr; if val & SR_FIFOE != 0 { sr &= !SR_FIFOE; } if val & SR_LVBCI != 0 { sr &= !SR_LVBCI; } if val & SR_BCIS != 0 { sr &= !SR_BCIS; } update_sr(&mut self.regs.lock(), func, sr); } fn set_cr(&mut self, func: Ac97Function, val: u8, mixer: &Ac97Mixer) { if val & CR_RR != 0 { self.stop_audio(func); let mut regs = self.regs.lock(); regs.func_regs_mut(func).do_reset(); } else { let cr = self.regs.lock().func_regs(func).cr; if val & CR_RPBM == 0 { // Run/Pause set to pause. self.stop_audio(func); let mut regs = self.regs.lock(); regs.func_regs_mut(func).sr |= SR_DCH; } else if cr & CR_RPBM == 0 { // Not already running. // Run/Pause set to run. { let mut regs = self.regs.lock(); let func_regs = regs.func_regs_mut(func); func_regs.piv = 1; func_regs.civ = 0; func_regs.sr &= !SR_DCH; } if let Err(e) = self.start_audio(func, mixer) { warn!("Failed to start audio: {}", e); } } let mut regs = self.regs.lock(); regs.func_regs_mut(func).cr = val & CR_VALID_MASK; } } fn set_glob_cnt(&mut self, new_glob_cnt: u32) { // Only the reset bits are emulated, the GPI and PCM formatting are not supported. if new_glob_cnt & GLOB_CNT_COLD_RESET == 0 { self.reset_audio_regs(); let mut regs = self.regs.lock(); regs.glob_cnt = new_glob_cnt & GLOB_CNT_STABLE_BITS; self.acc_sema = 0; return; } if new_glob_cnt & GLOB_CNT_WARM_RESET != 0 { // Check if running and if so, ignore. Warm reset is specified to no-op when the device // is playing or recording audio. if !self.po_info.thread_run.load(Ordering::Relaxed) { self.stop_all_audio(); let mut regs = self.regs.lock(); regs.glob_cnt = new_glob_cnt & !GLOB_CNT_WARM_RESET; // Auto-cleared reset bit. return; } } self.regs.lock().glob_cnt = new_glob_cnt; } fn start_audio(&mut self, func: Ac97Function, mixer: &Ac97Mixer) -> Result<(), Box> { const AUDIO_THREAD_RTPRIO: u16 = 10; // Matches other cros audio clients. let thread_info = match func { Ac97Function::Microphone => return Ok(()), Ac97Function::Input => &mut self.pi_info, Ac97Function::Output => &mut self.po_info, }; let num_channels = 2; let buffer_samples = current_buffer_size(self.regs.lock().func_regs(func), &self.mem)?; let buffer_frames = buffer_samples / num_channels; thread_info.thread_run.store(true, Ordering::Relaxed); let thread_run = thread_info.thread_run.clone(); let thread_mem = self.mem.clone(); let thread_regs = self.regs.clone(); match func { Ac97Function::Input => { let (stream_control, input_stream) = self.audio_server.new_capture_stream( num_channels, DEVICE_SAMPLE_RATE, buffer_frames, )?; self.pi_info.stream_control = Some(stream_control); self.update_mixer_settings(mixer); self.pi_info.thread = Some(thread::spawn(move || { if set_rt_prio_limit(u64::from(AUDIO_THREAD_RTPRIO)).is_err() || set_rt_round_robin(i32::from(AUDIO_THREAD_RTPRIO)).is_err() { warn!("Failed to set audio thread to real time."); } if let Err(e) = audio_in_thread(thread_regs, thread_mem, &thread_run, input_stream) { error!("Capture error: {}", e); } thread_run.store(false, Ordering::Relaxed); })); } Ac97Function::Output => { let (stream_control, output_stream) = self.audio_server.new_playback_stream( num_channels, DEVICE_SAMPLE_RATE, buffer_frames, )?; self.po_info.stream_control = Some(stream_control); self.update_mixer_settings(mixer); self.po_info.thread = Some(thread::spawn(move || { if set_rt_prio_limit(u64::from(AUDIO_THREAD_RTPRIO)).is_err() || set_rt_round_robin(i32::from(AUDIO_THREAD_RTPRIO)).is_err() { warn!("Failed to set audio thread to real time."); } if let Err(e) = audio_out_thread(thread_regs, thread_mem, &thread_run, output_stream) { error!("Playback error: {}", e); } thread_run.store(false, Ordering::Relaxed); })); } Ac97Function::Microphone => (), }; Ok(()) } fn stop_audio(&mut self, func: Ac97Function) { let thread_info = match func { Ac97Function::Microphone => return, Ac97Function::Input => &mut self.pi_info, Ac97Function::Output => &mut self.po_info, }; thread_info.thread_run.store(false, Ordering::Relaxed); if let Some(thread) = thread_info.thread.take() { if let Err(e) = thread.join() { error!("Failed to join {:?} thread: {:?}.", func, e); } } } fn stop_all_audio(&mut self) { self.stop_audio(Ac97Function::Input); self.stop_audio(Ac97Function::Output); self.stop_audio(Ac97Function::Microphone); } fn reset_audio_regs(&mut self) { self.stop_all_audio(); let mut regs = self.regs.lock(); regs.pi_regs.do_reset(); regs.po_regs.do_reset(); regs.mc_regs.do_reset(); } } // Gets the next buffer from the guest. This will return `None` if the DMA controlled stopped bit is // set, such as after an underrun where CIV hits LVI. fn next_guest_buffer<'a>( func_regs: &mut Ac97FunctionRegs, mem: &'a GuestMemory, ) -> GuestMemoryResult>> { let sample_size = 2; if func_regs.sr & SR_DCH != 0 { return Ok(None); } let next_buffer = func_regs.civ; let descriptor_addr = func_regs.bdbar + u32::from(next_buffer) * DESCRIPTOR_LENGTH as u32; let buffer_addr_reg: u32 = mem .read_obj_from_addr(GuestAddress(u64::from(descriptor_addr))) .map_err(GuestMemoryError::ReadingGuestBufferAddress)?; let buffer_addr = buffer_addr_reg & !0x03u32; // The address must be aligned to four bytes. let control_reg: u32 = mem .read_obj_from_addr(GuestAddress(u64::from(descriptor_addr) + 4)) .map_err(GuestMemoryError::ReadingGuestBufferAddress)?; let buffer_samples: usize = control_reg as usize & 0x0000_ffff; func_regs.picb = buffer_samples as u16; let samples_remaining = func_regs.picb as usize; if samples_remaining == 0 { return Ok(None); } let read_pos = u64::from(buffer_addr); Ok(Some( mem.get_slice(read_pos, samples_remaining as u64 * sample_size) .map_err(GuestMemoryError::ReadingGuestSamples)?, )) } // Reads the next buffer from guest memory and writes it to `out_buffer`. fn play_buffer( regs: &mut Ac97BusMasterRegs, mem: &GuestMemory, out_buffer: &mut PlaybackBuffer, ) -> PlaybackResult<()> { // If the current buffer had any samples in it, mark it as done. if regs.func_regs_mut(Ac97Function::Output).picb > 0 { buffer_completed(regs, mem, Ac97Function::Output)? } let func_regs = regs.func_regs_mut(Ac97Function::Output); let buffer_len = func_regs.picb * 2; if let Some(buffer) = next_guest_buffer(func_regs, mem)? { out_buffer.copy_cb(buffer.size() as usize, |out| buffer.copy_to(out)); } else { let zeros = vec![0u8; buffer_len as usize]; out_buffer .write(&zeros) .map_err(PlaybackError::WritingOutput)?; } Ok(()) } // Moves to the next buffer for the given function and registers. fn buffer_completed( regs: &mut Ac97BusMasterRegs, mem: &GuestMemory, func: Ac97Function, ) -> GuestMemoryResult<()> { // check if the completed descriptor wanted an interrupt on completion. let civ = regs.func_regs(func).civ; let descriptor_addr = regs.func_regs(func).bdbar + u32::from(civ) * DESCRIPTOR_LENGTH as u32; let control_reg: u32 = mem .read_obj_from_addr(GuestAddress(u64::from(descriptor_addr) + 4)) .map_err(GuestMemoryError::ReadingGuestBufferAddress)?; let mut new_sr = regs.func_regs(func).sr; if control_reg & BD_IOC != 0 { new_sr |= SR_BCIS; } let lvi = regs.func_regs(func).lvi; // if the current buffer was the last valid buffer, then update the status register to // indicate that the end of audio was hit and possibly raise an interrupt. if civ == lvi { new_sr |= SR_DCH | SR_CELV | SR_LVBCI; } else { let func_regs = regs.func_regs_mut(func); func_regs.civ = func_regs.piv; func_regs.piv = (func_regs.piv + 1) % 32; // move piv to the next buffer. } if new_sr != regs.func_regs(func).sr { update_sr(regs, func, new_sr); } if func == Ac97Function::Output { regs.po_pointer_update_time = Instant::now(); } Ok(()) } // Runs, playing back audio from the guest to `output_stream` until stopped or an error occurs. fn audio_out_thread( regs: Arc>, mem: GuestMemory, thread_run: &AtomicBool, mut output_stream: Box, ) -> PlaybackResult<()> { while thread_run.load(Ordering::Relaxed) { output_stream .next_playback_buffer() .map_err(PlaybackError::StreamError) .and_then(|mut pb_buf| play_buffer(&mut regs.lock(), &mem, &mut pb_buf))?; } Ok(()) } // Reads samples from `in_buffer` and writes it to the next buffer from guest memory. fn capture_buffer( regs: &mut Ac97BusMasterRegs, mem: &GuestMemory, in_buffer: &mut CaptureBuffer, ) -> CaptureResult<()> { // If the current buffer had any samples in it, mark it as done. if regs.func_regs_mut(Ac97Function::Input).picb > 0 { buffer_completed(regs, mem, Ac97Function::Input)? } let func_regs = regs.func_regs_mut(Ac97Function::Input); if let Some(buffer) = next_guest_buffer(func_regs, mem)? { in_buffer.copy_cb(buffer.size() as usize, |inb| buffer.copy_from(inb)) } Ok(()) } // Runs, capturing audio from `input_stream` to the guest until stopped or an error occurs. fn audio_in_thread( regs: Arc>, mem: GuestMemory, thread_run: &AtomicBool, mut input_stream: Box, ) -> CaptureResult<()> { while thread_run.load(Ordering::Relaxed) { input_stream .next_capture_buffer() .map_err(CaptureError::StreamError) .and_then(|mut cp_buf| capture_buffer(&mut regs.lock(), &mem, &mut cp_buf))?; } Ok(()) } // Update the status register and if any interrupts need to fire, raise them. fn update_sr(regs: &mut Ac97BusMasterRegs, func: Ac97Function, val: u16) { let int_mask = match func { Ac97Function::Input => GS_PIINT, Ac97Function::Output => GS_POINT, Ac97Function::Microphone => GS_MINT, }; let mut interrupt_high = false; { let func_regs = regs.func_regs_mut(func); func_regs.sr = val; if val & SR_INT_MASK != 0 { if (val & SR_LVBCI) != 0 && (func_regs.cr & CR_LVBIE) != 0 { interrupt_high = true; } if (val & SR_BCIS) != 0 && (func_regs.cr & CR_IOCE) != 0 { interrupt_high = true; } } } if interrupt_high { regs.glob_sta |= int_mask; if let Some(irq_evt) = regs.irq_evt.as_ref() { // Ignore write failure, nothing can be done about it from here. let _ = irq_evt.write(1); } } else { regs.glob_sta &= !int_mask; if regs.glob_sta & (GS_PIINT | GS_POINT | GS_MINT) == 0 { if let Some(irq_evt) = regs.irq_evt.as_ref() { // Ignore write failure, nothing can be done about it from here. let _ = irq_evt.write(0); } } } } // Returns the size in samples of the buffer pointed to by the CIV register. fn current_buffer_size( func_regs: &Ac97FunctionRegs, mem: &GuestMemory, ) -> GuestMemoryResult { let civ = func_regs.civ; let descriptor_addr = func_regs.bdbar + u32::from(civ) * DESCRIPTOR_LENGTH as u32; let control_reg: u32 = mem .read_obj_from_addr(GuestAddress(u64::from(descriptor_addr) + 4)) .map_err(GuestMemoryError::ReadingGuestBufferAddress)?; let buffer_len: usize = control_reg as usize & 0x0000_ffff; Ok(buffer_len) } #[cfg(test)] mod test { use super::*; use std::time; use audio_streams::DummyStreamSource; #[test] fn bm_bdbar() { let mut bm = Ac97BusMaster::new( GuestMemory::new(&[]).expect("Creating guest memory failed."), Box::new(DummyStreamSource::new()), ); let bdbars = [0x00u64, 0x10, 0x20]; // Make sure writes have no affect during cold reset. bm.writel(0x00, 0x5555_555f); assert_eq!(bm.readl(0x00), 0x0000_0000); // Relesase cold reset. bm.writel(GLOB_CNT_2C, 0x0000_0002); // Tests that the base address is writable and that the bottom three bits are read only. for bdbar in &bdbars { assert_eq!(bm.readl(*bdbar), 0x0000_0000); bm.writel(*bdbar, 0x5555_555f); assert_eq!(bm.readl(*bdbar), 0x5555_5558); } } #[test] fn bm_status_reg() { let mut bm = Ac97BusMaster::new( GuestMemory::new(&[]).expect("Creating guest memory failed."), Box::new(DummyStreamSource::new()), ); let sr_addrs = [0x06u64, 0x16, 0x26]; for sr in &sr_addrs { assert_eq!(bm.readw(*sr), 0x0001); bm.writew(*sr, 0xffff); assert_eq!(bm.readw(*sr), 0x0001); } } #[test] fn bm_global_control() { let mut bm = Ac97BusMaster::new( GuestMemory::new(&[]).expect("Creating guest memory failed."), Box::new(DummyStreamSource::new()), ); assert_eq!(bm.readl(GLOB_CNT_2C), 0x0000_0000); // Relesase cold reset. bm.writel(GLOB_CNT_2C, 0x0000_0002); // Check interrupt enable bits are writable. bm.writel(GLOB_CNT_2C, 0x0000_0072); assert_eq!(bm.readl(GLOB_CNT_2C), 0x0000_0072); // A Warm reset should doesn't affect register state and is auto cleared. bm.writel(0x00, 0x5555_5558); bm.writel(GLOB_CNT_2C, 0x0000_0076); assert_eq!(bm.readl(GLOB_CNT_2C), 0x0000_0072); assert_eq!(bm.readl(0x00), 0x5555_5558); // Check that a cold reset works, but setting bdbar and checking it is zeroed. bm.writel(0x00, 0x5555_555f); bm.writel(GLOB_CNT_2C, 0x000_0070); assert_eq!(bm.readl(GLOB_CNT_2C), 0x0000_0070); assert_eq!(bm.readl(0x00), 0x0000_0000); } #[test] fn start_playback() { const LVI_MASK: u8 = 0x1f; // Five bits for 32 total entries. const IOC_MASK: u32 = 0x8000_0000; // Interrupt on completion. let num_buffers = LVI_MASK as usize + 1; const BUFFER_SIZE: usize = 32768; const FRAGMENT_SIZE: usize = BUFFER_SIZE / 2; const GUEST_ADDR_BASE: u32 = 0x100_0000; let mem = GuestMemory::new(&[(GuestAddress(GUEST_ADDR_BASE as u64), 1024 * 1024 * 1024)]) .expect("Creating guest memory failed."); let mut bm = Ac97BusMaster::new(mem.clone(), Box::new(DummyStreamSource::new())); let mixer = Ac97Mixer::new(); // Release cold reset. bm.writel(GLOB_CNT_2C, 0x0000_0002); // Setup ping-pong buffers. A and B repeating for every possible index. bm.writel(PO_BDBAR_10, GUEST_ADDR_BASE); for i in 0..num_buffers { let pointer_addr = GuestAddress(GUEST_ADDR_BASE as u64 + i as u64 * 8); let control_addr = GuestAddress(GUEST_ADDR_BASE as u64 + i as u64 * 8 + 4); if i % 2 == 0 { mem.write_obj_at_addr(GUEST_ADDR_BASE, pointer_addr) .expect("Writing guest memory failed."); } else { mem.write_obj_at_addr(GUEST_ADDR_BASE + FRAGMENT_SIZE as u32, pointer_addr) .expect("Writing guest memory failed."); }; mem.write_obj_at_addr(IOC_MASK | (FRAGMENT_SIZE as u32) / 2, control_addr) .expect("Writing guest memory failed."); } bm.writeb(PO_LVI_15, LVI_MASK, &mixer); // Start. bm.writeb(PO_CR_1B, CR_RPBM, &mixer); std::thread::sleep(time::Duration::from_millis(50)); let picb = bm.readw(PO_PICB_18); let mut civ = bm.readb(PO_CIV_14); assert_eq!(civ, 0); let pos = (FRAGMENT_SIZE - (picb as usize * 2)) / 4; // Check that frames are consumed at least at a reasonable rate. // This wont be exact as during unit tests the thread scheduling is highly variable, so the // test only checks that some samples are consumed. assert!(pos > 1000); assert!(bm.readw(PO_SR_16) & SR_DCH == 0); // DMA is running. // civ should move eventually. for _i in 0..30 { if civ != 0 { break; } std::thread::sleep(time::Duration::from_millis(20)); civ = bm.readb(PO_CIV_14); } assert_ne!(0, civ); // Buffer complete should be set as the IOC bit was set in the descriptor. assert!(bm.readw(PO_SR_16) & SR_BCIS != 0); // Clear the BCIS bit bm.writew(PO_SR_16, SR_BCIS); assert!(bm.readw(PO_SR_16) & SR_BCIS == 0); // Set last valid to the next and wait until it is hit. bm.writeb(PO_LVI_15, civ + 1, &mixer); std::thread::sleep(time::Duration::from_millis(500)); assert!(bm.readw(PO_SR_16) & SR_LVBCI != 0); // Hit last buffer assert!(bm.readw(PO_SR_16) & SR_DCH == SR_DCH); // DMA stopped because of lack of buffers. assert_eq!(bm.readb(PO_LVI_15), bm.readb(PO_CIV_14)); // Clear the LVB bit bm.writeb(PO_SR_16, SR_LVBCI as u8, &mixer); assert!(bm.readw(PO_SR_16) & SR_LVBCI == 0); // Reset the LVI to the last buffer and check that playback resumes bm.writeb(PO_LVI_15, LVI_MASK, &mixer); assert!(bm.readw(PO_SR_16) & SR_DCH == 0); // DMA restarts. let (restart_civ, restart_picb) = (bm.readb(PO_CIV_14), bm.readw(PO_PICB_18)); std::thread::sleep(time::Duration::from_millis(20)); assert!(bm.readw(PO_PICB_18) != restart_picb || bm.readb(PO_CIV_14) != restart_civ); // Stop. bm.writeb(PO_CR_1B, 0, &mixer); assert!(bm.readw(PO_SR_16) & 0x01 != 0); // DMA is not running. } #[test] fn start_capture() { const LVI_MASK: u8 = 0x1f; // Five bits for 32 total entries. const IOC_MASK: u32 = 0x8000_0000; // Interrupt on completion. let num_buffers = LVI_MASK as usize + 1; const BUFFER_SIZE: usize = 32768; const FRAGMENT_SIZE: usize = BUFFER_SIZE / 2; const GUEST_ADDR_BASE: u32 = 0x100_0000; let mem = GuestMemory::new(&[(GuestAddress(GUEST_ADDR_BASE as u64), 1024 * 1024 * 1024)]) .expect("Creating guest memory failed."); let mut bm = Ac97BusMaster::new(mem.clone(), Box::new(DummyStreamSource::new())); let mixer = Ac97Mixer::new(); // Release cold reset. bm.writel(GLOB_CNT_2C, 0x0000_0002); // Setup ping-pong buffers. bm.writel(PI_BDBAR_00, GUEST_ADDR_BASE); for i in 0..num_buffers { let pointer_addr = GuestAddress(GUEST_ADDR_BASE as u64 + i as u64 * 8); let control_addr = GuestAddress(GUEST_ADDR_BASE as u64 + i as u64 * 8 + 4); mem.write_obj_at_addr(GUEST_ADDR_BASE + FRAGMENT_SIZE as u32, pointer_addr) .expect("Writing guest memory failed."); mem.write_obj_at_addr(IOC_MASK | (FRAGMENT_SIZE as u32) / 2, control_addr) .expect("Writing guest memory failed."); } bm.writeb(PI_LVI_05, LVI_MASK, &mixer); // Start. bm.writeb(PI_CR_0B, CR_RPBM, &mixer); assert_eq!(bm.readw(PI_PICB_08), 0); std::thread::sleep(time::Duration::from_millis(50)); let picb = bm.readw(PI_PICB_08); assert!(picb > 1000); assert!(bm.readw(PI_SR_06) & SR_DCH == 0); // DMA is running. // civ should move eventually. for _i in 0..10 { let civ = bm.readb(PI_CIV_04); if civ != 0 { break; } std::thread::sleep(time::Duration::from_millis(20)); } assert_ne!(bm.readb(PI_CIV_04), 0); let civ = bm.readb(PI_CIV_04); // Sets LVI to CIV + 1 to trigger last buffer hit bm.writeb(PI_LVI_05, civ + 1, &mixer); std::thread::sleep(time::Duration::from_millis(5000)); assert_ne!(bm.readw(PI_SR_06) & SR_LVBCI, 0); // Hit last buffer assert_eq!(bm.readw(PI_SR_06) & SR_DCH, SR_DCH); // DMA stopped because of lack of buffers. assert_eq!(bm.readb(PI_LVI_05), bm.readb(PI_CIV_04)); // Clear the LVB bit bm.writeb(PI_SR_06, SR_LVBCI as u8, &mixer); assert!(bm.readw(PI_SR_06) & SR_LVBCI == 0); // Reset the LVI to the last buffer and check that playback resumes bm.writeb(PI_LVI_05, LVI_MASK, &mixer); assert!(bm.readw(PI_SR_06) & SR_DCH == 0); // DMA restarts. let restart_civ = bm.readb(PI_CIV_04); std::thread::sleep(time::Duration::from_millis(200)); assert_ne!(bm.readb(PI_CIV_04), restart_civ); // Stop. bm.writeb(PI_CR_0B, 0, &mixer); assert!(bm.readw(PI_SR_06) & 0x01 != 0); // DMA is not running. } }